TY - CONF A1 - McMahon, Dino Peter T1 - Emerging Viruses in Bees: From Molecules toEmerging bee viruses: from molecules to host and vector ecology Ecology N2 - Technical advances in the study of molecular evolution have crystallized the fundamental insight that many bee pathogens evolve and adapt over timescales that overlap with host ecology. At the same time, the role played by bee host community ecology is increasingly being appreciated in host-parasite interactions. Here, we focus on Deformed wing virus (DWV) and present recent studies exploring the link between virulence, DWV genetic diversity and changes to host ecology - namely the arrival of an invasive ectoparasite, the Varroa destructor mite, which vectors viruses between honeybees. Specifically, we show how V. destructor may have created conditions for the emergence of more virulent strains of DWV in the western honeybee, Apis mellifera. We present a molecule-to-ecology framework to help interpret findings and to guide future hypotheses, emphasizing the role of molecular interactions between viruses and host immunity as drivers of change at the bee population level. T2 - International Union for the Study of Social Insects (IUSSI2018) CY - Guaruja, Brazil DA - 05.08.2018 KW - Disease KW - Virus KW - Emerging KW - Pathogen KW - Bee PY - 2018 AN - OPUS4-47156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - Exploring RNA viruses in edible insects: a case study using cockroaches, termites N2 - Our understanding of RNA viruses from edible insects is minimal at best, with studies largely focusing on model insect species and those associated with obvious signs of disease. This represents a considerable gap in understanding, given the growing role of insects as a source of food and feed, as well as the more general relevance of insects in agriculture and health. Illness due to entomophagy is rare but well documented, including fatal cases following the consumption of termites. Termites are eaten commonly in tropical Asia, Africa and South America, and are among the insects with the highest recorded fat content. There are many species of termites, with a wide range of diets and habitats centering around the consumption of wood and soil substrates. In this study, we report the results from a survey of more than 30 cockroach and termite transcriptomes, with the aim of understanding the diversity and evolution of RNA viruses as well as other potentially pathogenic organisms that are associated with this relevant but somewhat overlooked group of insects. We discuss our results in the context of the possible zoonotic risk posed by insects, as well as in the context of emerging viral and other disease threats that may face insects being reared at industrial scales. T2 - 4th International INSECTA 2018 Conference CY - Giessen, Germany DA - 05.09.2018 KW - Edible insects KW - Emerging KW - Virus KW - Pathogen KW - Termite KW - Cockroach PY - 2018 AN - OPUS4-47157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - The evolution of termite immunity N2 - The termites are a derived eusocial lineage of otherwise non-social cockroaches. Understanding the proximal and ultimate drivers of this major evolutionary transition represents an important goal in biology. One outstanding question concerns the evolution of termite immunity, which is thought to have undergone broad-sweeping adaptations in order to enhance group-level immune protection. To understand the evolutionary origins of termite immunity, we conducted qualitative and quantitative transcriptome analyses along a gradient of sociality. Firstly, we aimed to identify large-scale genetic shifts in immune traits linked to eusociality by comparing immune gene repertoires in solitary and subsocial cockroaches and across a range of eusocial termite lineages. Secondly, we compared the responses of a solitary cockroach, a subsocial wood-roach and different castes of a lower termite species to a non-specific immune challenge, in order to understand how sociality may have influenced the evolution of immune gene regulation. Firstly, we found that termites have a broadly representative repertoire of canonical immune genes as compared to gregarious cockroaches and subsocial wood-roaches. Secondly, with respect to immune challenge, the solitary cockroach and the subsocial wood-roach displayed a similarly comprehensive induced response, while the termite response was considerably dampened by comparison and strongly influenced by caste; with reproductives displaying a generally higher constitutive level of immune-gene expression compared to sterile castes. In summary we did not find termite eusociality to be associated with significant changes in immune gene diversity, but rather to be linked with significant modifications to the regulation of immunity following the origin of division of labour. T2 - BeGenDiv Annual Genomics Symposium 2018 CY - Berlin, Germany DA - 02.10.2018 KW - Evolution KW - Immunity KW - Termite PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471581 AN - OPUS4-47158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Breitenbach, Romy T1 - Biochemische und physiologische Charakterisierung der extrazellulären Matrix eines Modellbiofilms N2 - An der Grenzschicht zwischen einer festen Oberfläche und der umgebenden Luft wachsende subaerische Biofilme (SAB) zeichnen sich durch eine erhöhte Toleranz gegenüber extremen Umweltbedingungen und dem Eintrag von Bioziden aus. Dieser Schutz vor äußeren Umwelteinflüssen wird vornehmlich durch den Beitrag von extrazellulären polymeren Substanzen (EPS) und Pigmenten, wie Melanin und Carotinoiden, vieler unterschiedlicher Organismen gewährleistet. Deren Synthese wird wiederum durch intrazelluläre Botenstoffe reguliert. Das Cyanobakterium Nostoc punctiforme und der mikrokoloniale Pilz Knufia petricola, als Partner eines etablierten SAB-Modells und Vertreter zweier typischer Organismengruppen in SAB, wurden genutzt, um Botenstoffe und Pigmente genetisch zu manipulieren und die Biofilmmatrix dieser Mutanten strukturell zu untersuchen. In dieser Arbeit konnten erstmals die EPS beider Organismen extrahiert und die Struktur der extrazellulären Polysaccharide beschrieben werden. Daneben wurden die extrazellulären Polysaccharide von K. petricola Wildtyp mit denen verschiedener Pigmentmutanten verglichen. Das Fehlen des Schutzpigmentes Melanin führte zu einer ausgeprägteren extrazellulären Matrix in den Biofilmen. Gleichzeitig änderte sich die Struktur der extrazellulären Polysaccharide. Während der Wildtyp zu ~80% ein α-Glucan und zu ~20% ein α/β-Galaktomannan sekretierte, war der Anteil des Galaktomannans bei den Melaninmutanten erhöht. Das Ausschalten der Carotinoid-Synthese hatte jedoch keinen Einfluss auf die Beschaffenheit der extrazellulären Polysaccharide. Ein deutlich komplexeres extrazelluläres Polysaccharid aus acht verschiedenen Monosaccharid-Einheiten bildete N. punctiforme. Durch die Überproduktion des bakteriellen sekundären Botenstoffes c-di-GMP konnte zudem ein grundlegender Einfluss auf die Reaktion des Cyanobakteriums gegenüber externen Signalen und die damit verbundene Zelldifferenzierung gezeigt werden. Ein artifiziell erhöhtes c-di-GMP-Level in den Zellen führte zur Ausbildung eines sessilen Lebensstils durch Hemmung der Differenzierung motiler Hormogonien und vermehrte Produktion von EPS. Die Struktur der extrazellulären Polysaccharide wurde dadurch nicht verändert. Neben der strukturellen Analyse konnten die Veränderungen der extrazellulären Matrix beider Organismen zusätzlich durch mikroskopische Methoden visualisiert werden. Beide Organismen steuern komplexe Polymere, deren Produktion maßgeblich mit intrazellulären Faktoren verknüpft ist, zu der extrazellulären Matrix des Modellbiofilms bei. KW - Biofilm KW - EPS KW - Extrazelluläre Polysaccharide PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471747 SP - 1 EP - 198 CY - Berlin AN - OPUS4-47174 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerrits, Ruben A1 - Hennehan, M.J. A1 - Frick, D.A. A1 - von Blanckenburg, F. A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - The role of melanin in fungal mineral weathering and metal corrosion N2 - Melanins are organic pigments produced by most fungi. These organisms either fix these pigments in their cell wall or secrete them into their extracellular environment to protect themselves against an array of physicochemical stresses (e.g., UV irradiation, desiccation, ...). Melanin can adsorb metals like Fe. How this affects fungal uptake of Fe and deterioration of Fe-containing minerals and metals is however less known. To study this, we use the model fungi Knufia petricola A95, a rock-inhabiting fungus known to deteriorate minerals and have melanised cell walls, and Amorphotheca resinae, able to contaminate fuel tanks, secrete melanin and corrode metals. In K. petricola, we have deleted genes involved in melanin production and Fe uptake using CRISPR/Cas. Through comparison of the geochemical signatures of these gene deletion mutants with those of the wild type (WT), we explore the specific mineral/metal deterioration mechanisms of melanised fungi. Fe isotope signatures of the biomass of melanin- and Fe uptake-deficient mutants of K. petricola revealed that Fe adsorbed either directly onto melanin or after being reduced by Fe reductases. Importantly, once adsorbed to melanin, Fe could not be mobilised and taken up into the cell: both the WT and its melanin-deficient mutant, previously grown at Fe replete conditions, showed similar growth at Fe deficient conditions. Olivine dissolution experiments revealed that Fe oxidation inhibits dissolution. K. petricola was able to enhance dissolution when this inhibition is strongest (at pH 6) and prevented dissolution when this inhibition is weakest (at pH 4). The fungus therefore dissolves olivine by interacting with the oxidised Fe at the olivine surface. However, Fe uptake did not seem to be involved: mutants deficient in various Fe uptake mechanism dissolved olivine at the same rate as the WT. This indicates that Fe adsorption onto melanin might play a key role. This is also shown by K. petricola’s ability to enhance olivine dissolution even further if secreting a melanin precursor and A. resinae’s corrosion of carbon steel whilst secreting melanin. Combined, our results imply that the Fe adsorbed to melanin cannot be taken up but enables fungi to deteriorate Fe-containing substrates at a higher rate. T2 - Goldschmidt 2023 Conference CY - Lyon, Frankreich DA - 10.07.2023 KW - MIC KW - Bio-weathering KW - Olivine PY - 2023 AN - OPUS4-58523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bell, Jérémy A1 - Climent, Estela A1 - Gotor, Raúl A1 - Tobias, Charlie A1 - Martin-Sanchez, Pedro M. A1 - Rurack, Knut T1 - Dipstick coated with polystyrene-silica core-shell particles for the detection of microbiological fuel contamination N2 - Microbial contamination of fuels by fungi or bacteria poses risks such as corrosion and fuel system fouling, which can lead to critical problems in refineries and distribution systems and has a significant economic impact at every stage of the process. Many factors have been cited as being responsible for microbial growth, like the presence of water in the storage tanks. In fact, only 1 % water in a storage system is sufficient for the growth of microorganisms like bacteria or yeasts, as well as for the development of fungal biomass at the oil/water interface. This work presents a rapid test for the accurate determination of genomic DNA from aqueous fuel extracts. The detection is based on the use of polystyrene-mesoporous silica core-shell particles onto which modified fluorescent molecular beacons are covalently grafted. These beacons contain in the hairpin loop a target sequence highly conserved in all bacteria, corresponding to a fragment of the 16S ribosomal RNA subunit. The designed single-stranded molecular beacon contained fluorescein as an internal indicator and a quencher in its proximity when not hybridized. Upon hybridization in presence of the target sequence, the indicator and the quencher are spatially separated, resulting in fluorescence enhancement. To perform the assay the developed particles were deposited on different glass fibre strips to obtain a portable and sensitive rapid test. The assays showed that the presence of genomic DNA extracts from bacteria down to 50–70 μg L–1 induced a fluorescence response. The optical read-out was adapted for on-site monitoring by fitting a 3D-printed case to a conventional smartphone, taking advantages of the sensitivity of the CMOS detector. Such embedded assembly enabled the detection of genomic DNA in aqueous extracts down to the mg L–1 range and represents an interesting step toward on-site monitoring of fuel contamination. T2 - IMA 2023 CY - Chania, Greece DA - 18.09.2023 KW - Teststreifen KW - Test strip KW - Microbial KW - Mikrobiell KW - Smartphone KW - Particles KW - Partikeln PY - 2023 AN - OPUS4-58526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A1 - Schumacher, Julia A1 - Abdallah, Khaled T1 - Black fungi on technosphere surfaces: new niches for roof-inhabiting cousins N2 - Human-made systems, also called “build environment” or “technosphere”, sustain human comfort as well as our industrial activities. These systems have become particularly widespread since the Industrial Revolution, i.e., since the 17th century. At the same time, these technical systems – buildings, monuments, energy production, transformation and transmission, water purification and supply systems - serve as new habitats for living organisms. Life is ubiquitously present on our planet since a very long time: the Earth is 4.54 billion years old and microbial communities have played a key role on our planet for 3.7 billion years. Once human-made system appeared, microorganisms became an integral part of all types of technosphere infrastructure as well. Here we will illustrate biosphere-technosphere interactions using a specific example of the black fungi and their impact on the efficiency of solar (photovoltaic) panels. This expanding renewable infrastructure for electricity generation is growing on all continents - and create a specific, arid habitat for stress-tolerant black fungi. Black fungi were once discovered in hot and cold natural deserts – and now belong to the persistent colonisers of human-made deserts of solar parks. This new niche is evolving an impressive biodiversity. So far more than 60 isolates of black fungi belonging to Arthoniomycetes, Eurotiomycetes and Dothideomycetes were obtained from solar panels in Europe and Americas. Here we will present the analysis of this emerging anthropogenic biodiversity. Opportunities for future research in the field include quantification of the microbial load on technosphere surfaces – along with characterisation of the corresponding microbial diversity. The strategy of precise measurement and characterisation will enable us to reliably determine the beneficial and harmful functions that living microorganisms play in the functioning of energy-generating systems – and technosphere in general. T2 - IUBMB Focused Meeting on Extremophilic Fungi (FUN-EX) CY - Ljubljana, Slovenia DA - 19.09.2923 KW - Biosphere-technosphere interaction KW - Microbial communities KW - Solar parks PY - 2023 AN - OPUS4-58451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Catanzaro, Ilaria A1 - Nitsche, Sarah A1 - Gorbushina, Anna A1 - Schumacher, Julia A1 - Onofri, S. T1 - Generation of Cryomyces antarcticus mutants to explore the importance of DHN melanin for survival N2 - Cryomyces antarcticus, a cryptoendolithic melanized fungus endemic to Antarctica (phylum Ascomycota, class Dothideomycetes incertae sedis), has demonstrated high capability to survive extreme environmental conditions like those found in space (e.g., ionizing radiation, vacuum, microgravity), thus fueling fundamental astrobiological questions like “the search for life beyond Earth”. Its extraordinary resilience has been attributed to the presence of thick, highly melanized cell walls, which may contain both DHN and DOPA melanins. To better understand the contribution of DHN melanin to the overall resilience of C. antarcticus, we decided to generate melanin-deficient mutants by genetic engineering. For this, the melanin-PKS (polyketide synthase)- encoding ortholog was identified in the C. antarcticus CBS 116301 genome and used to design primers for re-sequencing of the capks1 locus in the strain CCFEE 515. Based on the genetic toolkit developed for the black fungus Knufia petricola, we designed a strategy for mutating capks1. Protoplasts of C. antarcticus CCFEE 515 were generated and co-transformed with a circular AMA-containing plasmid for expression and in-vivo assembly of Cas9 and two capks1-specific sgRNAs and a PCR-generated donor DNA i.e., a hygromycin resistance cassette flanked by ~75-bp-long sequences homologous to the capks1 locus. Transformation of C. antarcticus is challenging because of its very slow growth and uncertain gene copy number. It took six months from obtaining enough biomass for cell wall lysis to transferring the putatively resistant transformants for genotyping, but we eventually managed to generate three independent non-melanized (whitish) Δcapks1 mutants! We are now awaiting first complemented strains as ultimate genetic transformation control. They are considered to have a wild-type-like pigmentation due to the reintroduction of the wild-type capks1 into the Δcapks1 mutant. T2 - IUBMB Focused Meeting on Extremophilic Fungi (FUN-EX) CY - Ljubljana, Slovenia DA - 19.09.2023 KW - Black fungus KW - Genetics KW - UV tolerance KW - Melanin PY - 2023 AN - OPUS4-58458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dehkohneh, Abolfazl A1 - Gerrits, Ruben A1 - Schumacher, Julia A1 - Kreft, J.-U. A1 - Gorbushina, Anna T1 - Fungal biofilms on materials: describing and modelling growth of the black fungus Knufia petricola N2 - Fungi that grow as biofilms are associated with clinical settings as well as various cases of material fouling and material damage. Black fungi as biofilm formers have been rarely studied so far. Their conspicuous dark pigmentation, EPS production, adhesion capabilities and adaptations to stresses allow black fungi to develop biofilms on materials under harsh conditions. For example, rock-inhabiting black fungi withstand sun irradiation and dehydration and are therefore ubiquitous on arid surfaces like solar panels and marble monuments. To understand and control their ability to colonise and deteriorate materials, one should assess and model black fungi’s growth patterns. But so far, no mathematical model has been developed to describe their growth. Knufia petricola A95, representing rock-inhabiting fungi from Chaetothyriales, is genetically amenable and can serve as a model for biofilm studies in black fungi. The primary objective of this project is to develop a growth model for K. petricola A95 which will enable to define and predict material colonisation of black fungi. Dedicated experimental work with K. petricola will allow the quantitative assessment of the impact of environmental conditions (e.g. pH, nutrients, etc.) on the growth behaviour at the biofilm and single cells level. Data which will be used to validate and develop an individual-based model (based on the iDynoMICS modelling platform) that explains how fungal biofilms form, colonise materials, and cause deterioration. Thus far, research has been conducted on the impact of different concentrations and sources of major elements (e.g. C, N, …), as well as trace elements (e.g. Cu, Mg, …), on the colony shape and biomass of Knufia petricola A95 biofilms. To study the behaviour of single cells, the length of the cell cycle in different growth media has been determined via the combined use of microfluidic devices and confocal microscopy. T2 - IUBMB Focused Meeting on Extremophilic Fungi (FUN-EX) CY - Ljubljana, Slovenia DA - 19.09.2023 KW - Biofilm KW - Rock-inhabiting fungus KW - Mathematical modelling PY - 2023 AN - OPUS4-58438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Erdmann, Eileen A. A1 - Nitsche, Sarah A1 - Gerrits, Ruben A1 - Heeger, Felix A1 - Gorbushina, Anna T1 - Genetic engineering of black fungi: lessons learned from Knufia petricola N2 - The exponential rise in the number of fungal genomes sequenced by next-generation sequencing techniques makes it necessary to increase efforts to correctly annotate and assign gene functions. There are two possibilities to explore a genome and its gene functions. The hypothesis-based method proves the function of already existing gene/allele candidates by targeted mutagenesis - so called reverse genetics. The basis of forward genetics approaches is the random mutagenesis of the genome, followed by screening of obtained mutants for the phenotype of interest, and identification of the mutated genes in the respective mutants. This strategy is hypothesis-generating, means it is necessary to verify the relationship between the detected mutations and the observed phenotype by targeted mutagenesis of the identified gene. We developed a toolbox for editing the genome of the rock inhabitant Knufia petricola [Eurotiomycetes, Chaetothyriales] that allows the study of the phenotypic characteristics of black fungi such as the regulation of pigment synthesis, general stress responses, oligotrophy, and the unusual modes of cell division by advanced reverse and forward genetics approaches. The toolbox includes the annotated genome sequence of strain A95, efficient strategies for CRISPR/Cas9-based genome editing and live-cell imaging using genetically encoded fluorescent proteins, as well as protocols for -omics approaches and for simulation of mineral weathering. A forward genetics approach using transposon mutagenesis is currently developed for identifying essential genes. The established protocols and knowledge gained from K. petricola form a starting point for making other fungi from extreme environments accessible to genetic manipulation. T2 - IUBMB Focused Meeting on Extremophilic Fungi (FUN-EX) CY - Ljubljana, Slovenia DA - 19.09.2023 KW - Fungus KW - Extremotolerance KW - Genetics KW - Model organism PY - 2023 AN - OPUS4-58424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Brandhorst, Antonia A1 - Catanzaro, Ilaria A1 - Nitsche, Sarah A1 - Erdmann, Eileen A1 - Gerrits, Ruben A1 - Gorbushina, Anna T1 - Versatile DHN melanin – spotlight on its function in microcolonial black fungi N2 - Dihydroxynaphthalene (DHN) melanin is produced by diverse Ascomycetes via slightly differing biosynthetic routes. The polyketide synthases (PKS) release the heptaketide YWA1, the hexaketide AT4HN or the pentaketide T4HN. The first two products are deacetylated by ‘yellowish-green’ hydrolases to T4HN, and T4HN is further converted by a core set of enzymes to DHN. Final polymerization steps are accomplished by multicopper oxidases. DHN melanogenesis is often regulated in a spatial and temporal fashion resulting e.g., in melanized reproduction and survival structures of the foliar plant pathogen Botrytis cinerea (Schumacher 2016, Mol Microbiol). In contrast, a polyphyletic group of Ascomycetes (microcolonial fungi/ black yeasts) dwelling in hostile habitats such as bare rock surfaces in hot and cold deserts, exhibits constitutive melanogenesis. Here, DHN melanin builds a protective layer around all vegetative cells thus contributing to the survival of diverse environmental stresses even without specialized reproduction structures. For studying the relevance of constitutive DHN melanogenesis for tolerance of abiotic and biotic stresses, adhesion to substrates and subsequent damage of colonized surfaces, the rock-inhabiting fungus Knufia petricola was chosen as gene functions in this fungus can be studied by CRISPR/Cas9-based genome editing. The putative melanogenic genes were identified in the genome of K. petricola, deleted to confirm their involvement in DHN melanogenesis and co-expressed in Saccharomyces cerevisiae for reconstruction of the synthesis pathway. Phenotypes of DHN-deficient mutants are studied. Here, we will discuss the role of the DHN melanin layer on the outer cell wall in tolerating UV irradiation. T2 - Annual conference 2023 of the Association for General and Applied Microbiology CY - Göttingen, Germany DA - 10.09.2023 KW - Pigment KW - UV radiation KW - Tolerance PY - 2023 AN - OPUS4-58425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Eileen A1 - Kunze, R. A1 - Gorbushina, Anna A1 - Schumacher, Julia T1 - In-vivo mutagenesis of the rock inhabitant Knufia petricola by a customized Ac/Ds transposon system N2 - Microcolonial black fungi ubiquitously inhabit sun-exposed natural and man-made surfaces of our planet. To promote genetic studies, CRISPR/Cas9-based genome editing was implemented in the rock-inhabiting fungus Knufia petricola (Eurotiomycetes/ Chaetothyriales). Now efficient targeted mutagenesis of K. petricola - as a representative of the polyphyletic group of black fungi - enables the elucidation of extremotolerance, oligotrophism, unusual types of cell division, mineral weathering and symbiotic interactions. Even more progress on assigning functions to yet unknown genes can be achieved by a forward genetics approach. We chose the two-component Activator/Dissociation (Ac/Ds) transposon system from maize for generating K. petricola insertional mutants by in-vivo mutagenesis. For the optimal use of this genetic tool, an inducible promoter i.e, from the metabolism-independent Tet-on system, was combined with the AcTPase-coding sequence enabling the regulatable transposition of the resistance cassette-containing Ds transposon. In total, six auxotrophic Ac/Ds starter strains containing the Ds transposon at different position of ade2, ura3 or ppt1 were generated. The cultivation of these strains with doxycycline for induction of TET::Ac and subsequent selection of cells on ADE/URA/LYS-lacking media resulted in prototrophic colonies (revertants) for most Ac/Ds strains. Amplicon sequencing of excision sites revealed characteristic footprint patterns, proving that the transposon jumped. For identifying unknown Ds re-insertions sites, the thermal asymmetric interlaced (TAIL)-PCR was successfully implemented. First identified Ds re-insertion sites suggest that the distribution pattern may depend on the excision site. Currently, transposition frequencies and genome-wide distribution of re-insertion sites are studied in different Ac/Ds starter strains to identify the best candidate for generating saturated mutant libraries. This transposon mutagenesis strategy is also interesting for studying other black fungi, because once the Ac and Ds components are integrated in the genome, the fungus ‘only’ needs to be cultivated for generating insertional mutants. T2 - IUBMB Focused Meeting on Extremophilic Fungi (FUN-EX) CY - Ljubljana, Slovenia DA - 19.09.2023 KW - Black fungi KW - Genetics KW - Transposon KW - Mutagenesis PY - 2023 AN - OPUS4-58427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Brandhorst, Antonia A1 - Voigt, Oliver A1 - Nitsche, Sarah A1 - Erdmann, Eileen A1 - Gorbushina, Anna A1 - Schumacher, Julia T1 - DHN melanin – synthesis, regulation, and functions in Knufia petricola N2 - Dihydroxynaphthalene (DHN) melanin is produced by diverse Ascomycetes via slightly differing biosynthetic routes. The polyketide synthases (PKS) release the heptaketide YWA1, the hexaketide AT4HN or the pentaketide T4HN. The first two products are deacetylated by ‘yellowish-green’ hydrolases to T4HN, and T4HN is further converted by a core set of enzymes to DHN. Final polymerization steps are accomplished by multicopper oxidases. DHN melanogenesis is often regulated in a spatial and temporal fashion resulting e.g., in melanized reproduction and survival structures of the foliar plant pathogen Botrytis cinerea (Schumacher 2016, Mol Microbiol). In contrast, microcolonial black fungi exhibit constitutive melanogenesis. Here, DHN melanin builds a protective layer around all vegetative cells thus contributing to the survival of diverse environmental stresses even without specialized reproduction structures. For studying the regulation and relevance of DHN melanogenesis for tolerance of abiotic and biotic stresses, adhesion to substrates and subsequent damage of colonized surfaces, the rock-inhabiting fungus Knufia petricola was chosen as gene functions in this fungus can be studied by CRISPR/Cas9-based genome editing. The putative melanogenic genes were identified in the genome of K. petricola, deleted to confirm their involvement in DHN melanogenesis and co-expressed in Saccharomyces cerevisiae for reconstruction of the synthesis pathway. Phenotypes of deletion mutants are studied for specifying the functions of DHN melanin in K. petricola. T2 - IUBMB Focused Meeting on Extremophilic Fungi (FUN-EX) CY - Ljubliana, Slovenia DA - 19.09.2023 KW - Pigment KW - Fungus KW - Heterologous expression PY - 2023 AN - OPUS4-58430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Gorbushina, Anna A. T1 - How does light affect rock-inhabiting fungi? N2 - Sunlight is an almost unavoidable environmental cue and plays a fundamental role in the biology of pro- and eukaryotic organisms. To cope with sunlight-associated stresses e.g., high temperatures, UV radiation with associated DNA damage, accumulation of reactive oxygen species (ROS), desiccation and osmotic stresses, it is important for organisms to accurately sense and respond to changes in light. The benefits of light are obvious for green organisms such as cyanobacteria, algae and plants which use light as an energy source (photosynthesis). Less apparent are other light-dependent processes such as light-driven DNA repair by photolyases (photoreactivation) or ion pumping by microbial opsins. Fungi that can share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. Rock-inhabiting Dothideomycetes and Eurotiomycetes including Knufia petricola possess many proteins for absorbing UV/blue, green, red and far-red light, produce the black 1,8 dihydroxynaphthalene (DHN) melanin and orange-red carotenoids, and may live in multispecies biofilms. Here, we are addressing the question to which extent constitutive pigment formation (melanin and carotenoids) and responses mediated by the stress-activated mitogen-activated protein (MAP) kinase contribute to the observed light (UV-B) tolerance of K. petricola. T2 - 32nd Fungal Genetics Conference CY - Pacific Grove, CA, USA DA - 12.03.2024 KW - Knufia petricola KW - Black fungi KW - Light-induced stress PY - 2024 AN - OPUS4-59732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Looking through the eyes of fungi: from photoperception to photoresponses and beyond N2 - Sunlight is an almost unavoidable environmental cue and plays a fundamental role in the biology of pro- and eukaryotic organisms. To cope with sunlight-associated stresses e.g., high temperatures, UV radiation, accumulation of reactive oxygen species, desiccation, and osmotic stress, it is important for organisms to accurately sense and respond to changes in light. The benefits of light are obvious for green organisms such as cyanobacteria, algae and plants which use light as an energy source (photosynthesis). Fungi that can share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. Examples are the plant pathogen Botrytis cinerea, the gray mold fungus, and the rock inhabitant Knufia petricola, a microcolonial black fungus which forms multispecies biofilms with bacteria and algae. T2 - 20th Symposium of the Research Training Group on Bioactive Peptides – The colorful tree of life CY - Berlin, Germany DA - 23.01.2024 KW - Black fungi KW - Melanin KW - Stress tolerance PY - 2024 AN - OPUS4-59543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wen, Keqing A1 - Gorbushina, Anna A. A1 - Schwibbert, Karin A1 - Bell, Jérémy T1 - A microfluidic platform for monitoring biofilm formation in flow under defined hydrodynamic conditions N2 - Bacterial adhesion on surfaces of medical, water and food applications may lead to infections, water or food spoilage and human illness. In comparison to traditional static and macro flow chamber assays for biofilm formation studies, microfluidic chips allow in situ monitoring of biofilm formation under various flow regimes, have better environment control and smaller sample requirements. In this work, a novel microfluidic platform is developed to investigate biofilm adhesion under precisely controlled bacteria concentration, temperature, and flow conditions. This platform central unit is a single-inlet microfluidic flow cell with a 5 mm wide chamber designed and tested to achieve ultra-homogenous flow in the central area of chamber. Within this area, defined microstructures are integrated that will disturb the homogeneity of the flow, thus changing bacterial adhesion pattern. Here we present the monitoring of bacterial biofilm formation in a microfluidic chip equipped with a microstructure known as micro-trap. This feature is based on a 3D bacteria trap designed by Di Giacomo et al. and successfully used to sequester motile bacteria. At first, fluorescent particles similar in size to Escherichia coli (E. coli) are used to simulate bacteria flow inside the flow cell and at the micro-trap. The turbulences induced by the trap are analyzed by imaging and particle tracking velocimetry (PTV). Secondly, the model strain E. coli TG1, ideal and well described for biofilm studies, is used to analyze biofilm formation in the micro-trap. Therefore, a stable fluorescent strain E. coli TG1-MRE-Tn7-141 is constructed by using Tn7 transposon mutagenesis according to the method described by Schlechter et al. Sequestering of E. coli cells within the micro-trap was followed using epifluorescence microscopy. The novel microfluidic platform shows great potential for assessment of bacterial adhesion under various flow regimes. The performance of structural feature with respect to the generation of turbulences that promote or reduce bacterial adhesion can be systematically examined. The combination of flow analysis and fluorescent strain injection into the microfluidic chip shows that the micro-trap is useful for capturing bacteria at defined positions and to study how flow conditions, especially micro-turbulences, can affect biofilm formation. It represents a powerful and versatile tool for studying the relation between topography and bacteria adhesion. T2 - International Conference on Miniaturized Systems for Chemistry and Life Sciences CY - Katowice, Poland DA - 15.10.2023 KW - Biofilm KW - E. coli KW - Microfluidics KW - Velocimetry KW - Fluorescence PY - 2023 AN - OPUS4-59593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cook, Jake Thomas A1 - Tonon, Chiara T1 - Assessment of concrete bioreceptivity in algal biofilm green façade systems N2 - Algal biofilm façades are an alternative to traditional green façades which can help to improve biodiversity and air quality within cities. They present a low maintenance approach in which subaerial algae are grown directly on concrete substrates. The intrinsic bioreceptivity of the substrate is a critical factor in successful facade colonisation. Existing research has identified several environmental and material properties which influence concrete bioreceptivity, however a consensus has yet to be made on which properties are most influential and how the interaction between properties may promote algal biofilm growth under specific conditions. T2 - International Conference on Bio-Based Building Materials CY - Vienna, Austria DA - 21.06.2023 KW - Concrete KW - Façade KW - Bio-receptive KW - Extracellular polymeric substances KW - Fractional factorial PY - 2023 UR - https://www.rilem.net/agenda/5th-international-conference-on-bio-based-building-materials-1501 AN - OPUS4-58976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Eileen A1 - Kunze, R. A1 - Gorbushina, Anna A1 - Schumacher, Julia T1 - A random mutagenesis approach to elucidate the biology of extremotolerant black fungi N2 - Microcolonial black fungi ubiquitously inhabit sun-exposed natural and man-made surfaces of our planet. To promote genetic studies, which are hindered by slow growth, lack of sexual cycles and transformation difficulties, CRISPR/Cas9-based genetic tools were implemented (Erdmann et al. 2022, Front Fungal Biol). Now efficient targeted mutagenesis of the rock inhabitant Knufia petricola (Eurotiomycetes/Chaetothyriales) - as a representative of the polyphyletic group of black fungi - enables the elucidation of extremotolerance, oligotrophism, unusual types of cell division, mineral weathering and symbiotic interactions. Still more progress on assigning functions to yet unknown genes can be expected if a forward genetics approach is available. We chose the two-component Activator/ Dissociation (Ac/Ds) transposon system from maize for generating a collection of insertional mutants by in-vivo mutagenesis of K. petricola. For the optimal use of this genetic tool, an inducible promoter for the expression of the Ac transposase (AcTPase) and by this the regulatable transposition of the resistance cassette-containing Ds transposon is desired. However, endogenous promoters for nitrate assimilation and galactose catabolism - often used in fungi for regulatable gene expression - are not inducible by their substrates in K. petricola suggesting that the regulatory networks for nutrient acquisition differ significantly in oligotrophic fungi. Therefore, the metabolism-independent Tet-on system was combined with the AcTPase coding sequence and subsequently transformed into Ds-carrying K. petricola strains. In total, four auxotrophic Ac|Ds starter strains containing the Ds transposon at different position of ade2 or ura3 were generated. The cultivation of these strains with doxycycline for induction of TET::Ac and subsequent selection of cells on ADE/URA-lacking media resulted in prototrophic colonies (revertants) for some but not all Ac|Ds strains. Currently, the transposition events in the obtained revertants are studied to validate the procedure. First amplicon sequencing of excision sites revealed footprint patterns, proving the transposon jumped. T2 - 16th European Conference on Fungal Genetics CY - Innsbruck, Austria DA - 05.03.2023 KW - Rock-inhabiting fungi KW - Foward genetics KW - In-vivo mutagenesis PY - 2023 AN - OPUS4-57144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Catanzaro, Ilaria A1 - Nitsche, Sarah A1 - Gorbushina, Anna A1 - Schumacher, Julia A1 - Onofri, S. T1 - Understanding the role of DHN melanin in Cryomyces antarcticus N2 - Cryomyces antarcticus – a cryptoendolithic black fungus endemic to Antarctica – is taxonomically classified in phylum Ascomycota, class Dothideomycetes incertae sedis. C. antarcticus has shown high capability to survive extreme environmental conditions like those found in space (ionizing radiation, vacuum, microgravity), thus fueling fundamental astrobiological questions like “searching for life beyond Earth” (Onofri et al. 2020, Extremophiles Astrobiol Model). Its extraordinary resilience has been attributed to the presence of thick, highly melanized cell walls, which may contain both DHN and DOPA melanins (Pacelli et al. 2020, Appl Microbiol Biotechnol). To better understand the contribution of DHN melanin to the overall resilience of C. antarcticus, we initially adopted chemicals e.g., tricyclazole to inhibit the DHN melanin synthetic pathway; however, these studies gave inconclusive results. Eventually, we decided to generate melanin-deficient mutants by genetic engineering. Using the genetic toolkit developed for the black fungus Knufia petricola (Voigt et al. 2020, Sci Rep; Erdmann et al. 2022, Front Fungal Biol), we designed a strategy for mutating the key enzyme (polyketide synthase)-encoding gene capks1 by transient delivery of Cas9 and capks1-specific sgRNA from AMA-containing plasmids and PCR-generated donor DNA i.e., resistance cassettes flanked by ~75-bp-long sequences homologous to capks1. For this, the melanin-PKS encoding ortholog was identified in the C. antarcticus CBS 116301 genome (mycocosm.jgi.doe.gov) and used to design primers for re-sequencing of the capks1 locus in the strain CCFEE 515. Transformation of C. antarcticus is challenging because of its very slow growth; we expect that 4-6 months are needed from obtaining enough biomass for cell wall lysis until transferring putatively resistant transformants for genotyping. Important parameters were evaluated: protoplasts can be generated, and they survive the transformation procedure, and suitable concentrations of selective agents have been identified. Nowadays, we are waiting for the first C. antarcticus mutants considered to be deficient in DHN melanogenesis. T2 - 16th European Conference on Fungal Genetics CY - Innsbruck, Austria DA - 05.03.2023 KW - Cryptoendolithic black fungus KW - DHN melanin KW - Astrobiology PY - 2023 AN - OPUS4-57145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Brandhorst, Antonia A1 - Nitsche, Sarah A1 - Erdmann, Eileen A1 - Gerrits, Ruben A1 - Gorbushina, Anna T1 - The roles of DHN melanin and the stress-activated MAP kinase in the rock inhabitant Knufia petricola N2 - Black fungi/yeasts exhibit high stress tolerance, yeast‑like or meristematic growth, and constitutive 1,8-dihydroxynaphthalene (DHN) melanin formation. Due to their slow growth, robust cell walls and the lack of sexual cycles and genetic tools, the underlying mechanisms of their phenotypic traits have remained largely unexplored. Using recently developed genetic tools, it is now possible to manipulate the genome of the rock-inhabiting model fungus Knufia petricola. Thus, gene functions and the cell biology of black fungi can be studied using CRISPR/Cas9-based genome editing and live-cell imaging with genetically encoded fluorescent proteins. Here, we are addressing the question to which extent constitutive pigment formation (melanin and carotenoids) and responses mediated by the stress-activated mitogen-activated protein (MAP) kinase contribute to the observed extremotolerance of K. petricola. The mutations of pks1, phs1 and both genes result in melanin-free (pink), carotenoid-free (black) and pigment-free (white) strains, respectively. The other putative melanogenic genes were identified in the genome, deleted to confirm their involvement in DHN melanogenesis and co-expressed in Saccharomyces cerevisiae for reconstruction of the synthesis pathway. Sak1 encoding the stress-activated MAP kinase was deleted in the wild-type and different pigment-deficient backgrounds. Growth of the obtained single, double and triple deletion mutants was tested by droplet tests on media supplemented with different stress-inducing agents. The Δsak1 mutants show slightly reduced growth rates even without environmental pressure and are hypersensitive to different stresses: e.g. osmotic, oxidative, membrane, pH and heat stress. Melanin-free Δsak1 mutants are more sensitive than black Δsak1 mutants to some but not all stress conditions, suggesting that melanin and the SAK1 pathway have complementary roles in protecting K. petricola from stress. T2 - 16th European Conference on Fungal Genetics CY - Innsbruck, Austria DA - 05.03.2023 KW - Black fungus KW - Extremotolerance KW - Pigments PY - 2023 AN - OPUS4-57147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strzelczyk, Rebecca A1 - Horn, Wolfgang A1 - Matthias, Richter A1 - Christoph, Grimmer T1 - Constant emitting reference material for emissions test procedures N2 - Since nowadays people spend most of their time indoors, a healthy environment is essential. Volatile organic compounds (VOCs) emitted from furniture and building materials are reported to cause health complaints. Therefore, the usage of low emitting materials will improve the indoor air quality. Quantitative VOC emission testing is usually conducted in emission test chambers under specified controlled conditions as described in DIN 16000-9 and DIN EN 16516. For reasons of quality control/quality assurance (QC/QA) and for a better comparability of test results from different laboratories, suitable emission reference materials (ERM) are needed. Here, it is important to have a homogenous material with known emission rates over a specific time. Different approaches can be found in literature, inter alia polymer films loaded with the target compound to be released again, or a lacquer material to which a VOC mixture is added. After curing of the lacquer, the material can be loaded into a test chamber. Drawback of those approaches are their relatively fast decreasing emission profiles. For QC/QA purposes according to the test standards, VOC sources with constant emission profiles are desirable. The EU-funded research project MetrIAQ “Metrology for the determination of emissions of dangerous substances from building materials into indoor air” is working on a multi-component ERM with an envisaged instability of ≤ 10 % in the emission rate over at least 14 days. Within a doctoral thesis porous materials are impregnated with VOCs. Supercritical CO2 is used as solvent. Thus, the impregnated material does not contain any solvent that may show a measurable amount of emission in the emission test chamber. Furthermore, CO2 has the benefits to have a good availability and low costs. For the selection of porous materials several properties like the pore size, the surface, and the interaction with the components in the atmosphere need to be considered. The impregnation method is optimised while the different porous materials are tested. For the selection of porous materials the pores need to be large enough for the VOC molecules, further influence of the pore size is tested. T2 - Healthy Buildings CY - Aachen, Germany DA - 11.06.2023 KW - VOC KW - Emission KW - Quality assurance KW - Reference material PY - 2023 AN - OPUS4-59842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Iznaguen, H. A1 - Traub, Heike A1 - Feldmann, Ines A1 - Köppen, Robert A1 - Witt, Angelika A1 - Jung, Christian A1 - Becker, Roland A1 - Oleszak, K. A1 - Bücker, Michael A1 - Urban, Klaus A1 - Reger, Christian A1 - Ostermann, Markus T1 - Environmental sustainability and –stability of Materials concerning the Migration of pollutants N2 - MaUS is an acronym for ”Material und Umweltsimulationen“. Plastics are in the focus of environmental politics due to their long-term behaviour and therefore to their persistence. Not only that they appear as visible contaminants in the sea and on the beach, but their unknown behaviour concerning their additives as well as the related transformation products are anxious. Therefore, we wish to establish a certified reference method to provide a method for testing plastics. Aim of this project is the development of fast motion standard reference methods for testing plastics regarding to their environmental compatibility. To establish these testing methods, we use polystyrene (PS) and polypropylene (PP) with environmental relevant brominated flame retardants, known for their persistent bioaccumulative and toxic (PBT) properties. In case of PS the material contains 1 wt% of 1,2,5,6,9,10-hexabromocyclododecan (HBCD) and in case of PP 0.1 wt% bromodiphenylether (BDE-209), which is known as a substance of very high concern (SVHC). Furthermore, we use polycarbonate (PC), which is still used as material in baby flasks and releases Bisphenol A (BPA), an estrogenic active substance. As an additional material PTFE is used for its importance as a source for two ubiquitous environmental substances (PFOS and PFOA), whose toxicological effects are still incompletely known. The focus in this current work is set on the transfer of potential pollutants out of applied materials mentioned above into environmental compartments like water or soil. Here an accelerated aging concept should be developed to shortened time consuming natural processes. For these resulting simulations we use a programmable weathering chamber with dry and wet periods and with high and low temperatures. These programmes run for several weeks and according to a defined sampling schedule we take water samples, run a clean-up procedure by SPE (Molecular imprinted polymers (MiPs) resp. polymer-based cartridges (Waters Oasis HLB)) and analyse them by HPLC-UV resp. LC-MS/MS. Of most interest in case of flame retardants are photocatalytic transformation products. Therefore, we conduct a non-target-screening resp. a suspected target-screening by LC-MS/MS and HRMS. T2 - Project meeting PlasticsEurope - BAM CY - Leverkusen, Germany DA - 06.11.2018 KW - Environmental simulation KW - Pollutants PY - 2018 AN - OPUS4-47026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Iznaguen, H. A1 - Traub, Heike A1 - Feldmann, Ines A1 - Köppen, Robert A1 - Witt, Angelika A1 - Jung, Christian A1 - Becker, Roland A1 - Oleszak, K. A1 - Bücker, Michael A1 - Urban, Klaus A1 - Reger, Christian A1 - Ostermann, Markus T1 - TF-Projekt MaUS: Material und Umweltsimulation N2 - Gegenstand des Projekts ist die Prüfung der Umweltbeständigkeit und -verträglichkeit von Materialien und Produkten hinsichtlich der Emission von potenziellen Schadstoffen in die Umwelt. Hierzu werden chemisch-physikalische Einflüsse (Bewitterung) und mikrobielle Beanspruchungen an Modellmaterialien evaluiert. So werden die Freisetzungsraten von Schadstoffen in Abhängigkeit der Beanspruchung beschrieben. Als Modellmaterialien kommen die Polymere Polycarbonat, Polytetrafluorethylen, Polystyrol und Polypropylen zum Einsatz. Synergistische Effekte der Bewitterungsparameter und der mikrobiologischen Beanspruchung sollen dabei ebenso betrachtet werden, wie die gezielte Alterung. Auch findet eine Beschreibung des Verhaltens der ausgetragenen Schadstoffe in den Umweltkompartimenten Boden oder Wasser statt. Hier sind mit Hilfe der zu entwickelnden Screening- und non-Target-Analyseverfahren die Transformation und der Metabolismus durch Mikroorganismen zu beschreiben. Aus den Ergebnissen sollen Korrelationen zwischen den künstlichen Alterungsverfahren und realen Szenarien abgeleitet werden, die es gestatten, Schnellprüfverfahren zu etablieren, die die Simulation der realen Beanspruchungen im Zeitraffermodell anwendbar machen. Somit sollen standardisierbare Schnellbeanspruchungs-verfahren erarbeitet werden, die als Prüfeinrichtungen etabliert werden und von externen Auftraggebern zur Prüfung der Umweltbeständigkeit und -verträglichkeit von neuen Materialien genutzt werden können. Die Umweltwirkungen (chemisch-physikalisch und mikrobiologisch) sollen so definiert eingesetzt werden, dass eine reproduzierbare Prüfung möglich wird. Aus diesen Verfahren und Methoden sollen Normen abgeleitet werden, die eine standardisierte Materialprüfung ermöglichen. T2 - Projektmeeting BAM - Covestro CY - Leverkusen, Germany DA - 29.05.2018 KW - Umweltsimulation KW - Schadstoffaustrag PY - 2018 AN - OPUS4-47025 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Iznaguen, Hassan A1 - Traub, Heike A1 - Feldmann, Ines A1 - Köppen, Robert A1 - Witt, Angelika A1 - Jung, Christian A1 - Becker, Roland A1 - Oleszak, Katrin A1 - Bücker, Michael A1 - Urban, Klaus A1 - Reger, Christian A1 - Ostermann, Markus T1 - Bewitterungsszenarien im Vergleich – Veränderungen in der Oberflächenmorphologie von Polypropylen (PP) und Polystyrol (PS) unter dem Aspekt des Austrags von polybromierten Flammschutzmitteln N2 - Gegenstand der vorzustellenden Arbeiten ist die Prüfung der Umwelt-beständigkeit und -verträglichkeit von Materialien und Produkten hinsichtlich der Emission von potenziellen Schadstoffen in die Umwelt. Hierzu werden chemisch-physikalische Einflüsse (Bewitterung) und mikrobielle Beanspruchungen an Modellmaterialien evaluiert. So werden die Freisetzungsraten von Schadstoffen in Abhängigkeit der Beanspruchung beschrieben. Als Modellmaterialien kommen die Polymere Polystyrol (PS) und Polypropylen (PP) zum Einsatz. Synergistische Effekte der Bewitterungsparameter und der mikrobiologischen Beanspruchung sollen dabei ebenso betrachtet werden, wie die gezielte Alterung. Auch findet eine Beschreibung des Verhaltens der ausgetragenen Schadstoffe in den Umweltkompartimenten Boden oder Wasser statt. Hier sind mit Hilfe der zu entwickelnden Screening- und non-Target-Analyseverfahren die Transformation und der Metabolismus durch Mikroorganismen zu beschreiben. Aus den Ergebnissen sollen Korrelationen zwischen den künstlichen Alterungsverfahren und realen Szenarien abgeleitet werden. T2 - 47. Jahrestagung der GUS CY - Blankenloch-Stutensee, Germany DA - 21.03.2018 KW - Schadstoffaustrag KW - Umweltsimulation KW - Bewitterung PY - 2018 SN - 978-981-18507-2-7 VL - 47 SP - 115 EP - 128 AN - OPUS4-49802 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Iznaguen, H. A1 - Traub, Heike A1 - Feldmann, Ines A1 - Köppen, Robert A1 - Witt, Angelika A1 - Jung, Christian A1 - Becker, Roland A1 - Oleszak, K. A1 - Bücker, Michael A1 - Urban, Klaus A1 - Reger, Christian A1 - Ostermann, Markus T1 - Bewitterungsszenarien im Vergleich – Veränderungen in der Oberflächenmorphologie von Polypropylen (PP) und Polystyrol (PS) unter dem Aspekt des Austrags von polybromierten Flammschutzmitteln N2 - In addition to previously reported results on the simulated aging of polystyrene samples (PS) containing 1 wt. % hexabromocyclododecane (HBCD), we present the first results of our investigations of polypropylene (PP)-samples containing 0.1 wt. % BDE-209. All studied polymer samples were exposed to a defined weathering schedule in a climate chamber in accordance to regulation EN ISO 4892-3:2006.For the determination of BDE-209 in the collected rain water samples derived from the used climate chamber, the samples were prepared in accordance with a validated protocol. Before the analyses, each sample was spiked with 2 µL of isotopically labeled BDE-209 (13C10-BDE-209) to serve as internal standard (ISTD) in the performed stable isotope dilution analysis. Subsequently the samples were extracted with isooctane, the obtained aliquots of the extracts were concentrated to 200 µL and 2 µL of the resulting solution were injected to the GC/MS for quantification. Additionally, the total bromine contents are monitored for the aged and untreated samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as well as X-ray fluorescence analysis (XRF) as non-destructive and rapid method. Furthermore, results from surface analysis using environmental scanning electron microscopy (ESEM) for morphological characterization of the aged and untreated samples were presented and discussed. In general, the resulting data from the accelerated aging will be compared to those from the natural weathering experiments (“atmospheric exposure”, in soil). The atmospheric exposure was performed by placing the samples on a weathering rack, which is aligned in SW direction (in a 45° angle to the horizon). The weathering data were regularly recorded by Deutscher Wetterdienst at this site. The surfaces of the test specimens (aged and stored references) were analyzed by ESEM as well as by LA-ICP-MS and by XRF. The surface of PS and PP specimens aged outdoors present the aging under real conditions and allow the comparison to the accelerated aged specimens by means of the weathering chamber. This way, we explore the efficiency of the accelerated aging procedure, which provides the advantage of well-defined and reproducible conditions compared to natural weathering, as a tool for testing different plastic materials. Additionally “in soil” experiments were conducted in-door in a well characterized testing soil. The soil (boulder-clay, sand with 12 % loam, particle size in total 0.2-4 mm) is filled in a free-draining concrete basin inside of an air-conditioned room. In this manner, TOC, water capacity and humidity are recorded parameters. To assure a washing out process from the samples by the raining water, the target water content is calculated to 8%. The actual humidity is measured by a tensiometer, assuring the duration of the raining period. The water content is additionally monitored by weight of the basin, capturing water from raining periods. The correct humidity is a fundamental parameter for biological activity. Samples of PS resp. PP were of dimension 10x1cm and 5 specimens were placed up to the half in the soil per basin. Microbial activity of the soil, monitored by the reference polyurethane, sets HBCD resp. BDE-209 of the samples free and will be leached from the samples by raining water. Thereafter these will be captured by passive samplers placed in a distinct distance to the samples in the soil. The “in soil” experiments are complementary to the weathering experiments due to the biological activity in the soil. These experiments simulate the fate of the brominated flame retardants in the biosphere. N2 - Gegenstand der vorzustellenden Arbeiten ist die Prüfung der Umweltbeständigkeit und -verträglichkeit von Materialien und Produkten hinsichtlich der Emission von potenziellen Schadstoffen in die Umwelt. Hierzu werden chemisch-physikalische Einflüsse (Bewitterung) und mikrobielle Beanspruchungen an Modellmaterialien evaluiert. So werden die Freisetzungsraten von Schadstoffen in Abhängigkeit der Beanspruchung beschrieben. Als Modellmaterialien kommen die Polymere Polystyrol (PS) und Polypropylen (PP) zum Einsatz, die jeweils mit polybromierten Flammschutzmitteln (PBFSM) versehen sind. Synergistische Effekte der Bewitterungsparameter und der mikrobiologischen Beanspruchung sollen dabei ebenso betrachtet werden, wie die gezielte Alterung. Auch findet eine Beschreibung des Verhaltens der ausgetragenen Schadstoffe in den Umweltkompartimenten Boden oder Wasser statt. Hier sind mit Hilfe der zu entwickelnden Screening- und non-Target-Analyseverfahren die Transformation und der Metabolismus durch Mikroorganismen zu beschreiben. Auch soll mit Hilfe der RFA und der LA-ICP-MS die Abreicherung der PBFSM in den Modellmaterialien beschrieben werden. Aus den Ergebnissen sollen Korrelationen zwischen den künstlichen Alterungsverfahren und realen Szenarien abgeleitet werden. T2 - 47. Jahrestagung der GUS 2018 CY - Stutensee - Blankenloch, Germany DA - 21.03.2018 KW - Polypropylen KW - Polystyrol KW - Flammschutzmittel KW - XRF KW - LA-ICP-MS PY - 2018 AN - OPUS4-47024 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan, Ina A1 - Gorbushina, Anna T1 - Pilze als Besiedler von Kulturgut: Wechselwirkungen mit Material erkennen und einschätzen N2 - Mikroskopische Pilze, die sich schnell auf verfügbaren Oberflächen ausbreiten können und die wir (wenn sie sich ansammeln), auch mit bloßem Auge erkennen können, werden Schimmelpilze genannt. Da diese Organismen verschiedene organische Kohlenstoffverbindungen als Nahrung benutzen, werden sie sich bei wachstumfördernden Feuchtigkeitsbedingungen in Bibliothekbeständen schnell ausbreiten können. Im Vortrag werden Haupteigenschaften aller Pilze, sowie auch aktuelle Methoden der Identifizierung dieser Organismen erörtert. Benutzung geeigneter Lebendkulturen als Referenzorganismen geben der Materialprüfung und -forschung eine Möglichkeit des reproduzierbaren Experimentierens mit verschiedenen Materialien und Simulation von Bedingungen im Gebrauch. Vorteile unserer Testverfahren sind: (i) Zeitraffung und Kontrollierbarkeit der Umweltparameter; (ii) Benutzung einer naturnahen Vergesellschaftung; iii) gezielte Variationen der Prüfbedingungen im Labor. Ziel dieser Untersuchungen ist einerseits biogene Schäden an neuen Materialien zu verfolgen und zu modellieren, und damit eine bessere Planungsgrundlage für die Materialentwicklung anzubieten. Andererseits werden mit den Referenzorganismen mikrobiologisch moderne und zeitraffende Techniken angeboten, die neue Behandlungsmethoden oder Pflegeverfahren für die Bestandserhaltung erwarten lassen. T2 - 8. Tag der Bestandserhaltung CY - Freie Universität Berlin, Berlin, Germany DA - 27.09.2018 KW - Kulturgut KW - Pilz KW - Schimmel KW - Bestandserhaltung PY - 2018 AN - OPUS4-46293 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geburtig, Anja A1 - Gorbushina, Anna A1 - Plarre, Rüdiger A1 - Stephan, Ina T1 - Umweltsimulation an der BAM – Grundlegende Ansätze mit Beispielen aus der natürlichen Umwelt N2 - Drei grundlegend verschiedene Ansätze für Umweltsimulation werden an Beispielen illustriert: (i) Ganzheitlicher Ansatz - Nachstellen von Umweltmilieus im Labor Ziel ist hier das Nachstellen von (kombinierten) Umweltbedingungen im Labor; die Umweltparameter werden mit all ihren Wechselwirkungen aufgebracht. Hauptnutzen ist eine gegenüber der natürlichen Beanspruchung erhöhte Reproduzierbarkeit der Umweltbedingungen. Hat man sein Laborsetup entwickelt, ist es auf verschiedene Materialien anwendbar. Unter solchen Laborbedingungen ermittelte Lebensdauern sind dabei nicht auf die typischerweise sehr variablen Real-Umweltbedingungen übertragbar. (ii) Parametrisierter Ansatz - Ermittlung einzelner Materialempfindlichkeiten Hierbei werden im Labor die Wirkungen separater Umweltparameter auf Materialien nachgestellt. Für eine solche Separation der Einflussfaktoren ist insbesondere die Aufschlüsselung möglicher Wechselwirkungen der Umwelt-parameter (z.B. Mikroklima an bestrahlten Oberflächen) erforderlich. Einzelne (meist Alterungs-) Empfindlichkeiten können qualitativ nachgewiesen werden oder sogar – als Beanspruchungs-Wirkungs-Funktionen – quantifiziert werden, was einen wesentlichen Schritt in Richtung der Digitalisierung der Material¬prüfung darstellt. Insbesondere ist dann auch eine Lebensdauer-vorhersage für vorgegebene Zeitreihen der Beanspruchungs¬parameter umsetzbar. (iii) Rückwirkungen auf die Umwelt Umweltbeanspruchungen können zur Freisetzung von Schadstoffen in die Umwelt führen. Durch die Nachstellung kritischer, aber realitätsnaher Einsatzszenarien kann die Menge an freigesetzten Substanzen abgeschätzt werden. Egal, welcher Ansatz verfolgt wird – ein Vergleich mit der oder einer Real-beanspruchung ist unerlässlich, ebenso wie die Messdatenaufzeichnung (data logging) aller potenziell relevanten Beanspruchungsparameter während dieser Realbeanspruchung. Obwohl die naturnahe Umwelt – sowohl in der BAM als auch bei der GUS – gegenüber der technischen Umwelt eher untergeordnet auftritt, werden zur Illustration Beispiele aus der naturnahen Umwelt verwendet. T2 - 50. Jahrestagung der GUS CY - Online meeting DA - 23.03.2022 KW - Umweltsimulation PY - 2022 SN - 978-3-9818507-7-2 SP - 79 EP - 89 AN - OPUS4-55015 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oberbeckmann, Sonja A1 - Gorbushina, Anna T1 - On the intersection of microbiome and material research: what can be achieved? N2 - Any surface in the environment acts as hotspot for microbial attachment and activity. These biofilms represent the interface between humans and the environment. While in the past biofilms were often seen as disturbance, we now start to understand the enormous potential of beneficial biofilms. They can be used in a broad range of applications and are sources for new microorganisms and traits. After all, biofilms represent a great example for a collaborative lifestyle. T2 - Bioeconomy Changemakers Festival, Hereon CY - Teltow, Germany DA - 14.03.2024 KW - Biofilm KW - Microbiome KW - Sustainability KW - Biosphere KW - Microplastics PY - 2024 AN - OPUS4-60202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Brandhorst, Antonia A1 - Erdmann, Eileen A1 - Nitsche, Sarah A1 - Voigt, Oliver A1 - Gorbushina, Anna T1 - DHN melanin synthesis in the rock inhabitant Knufia petricola N2 - DHN (1,8-dihydroxynaphthalene) melanin is produced by Ascomycetes via slightly differing synthetic routes. Polyketide synthases release YWA1, AT4HN or T4HN. YWA1 and AT4HN are deacetylated by ‘yellowish-green’ hydrolases, and T4HN is converted by a core set of enzymes to DHN. Final polymerization steps are accomplished by multicopper oxidases. The melanogenic genes are tightly, partially or not clustered in the genomes, and are often regulated in a spatial and/or temporal fashion. By contrast, microcolonial fungi/black yeasts – a polyphyletic group of Ascomycetes dwelling in hostile habitats such as bare rock surfaces – feature constitutive DHN melanogenesis. Here, we report on the DHN melanogenic genes of Knufia petricola (Eurotiomycetes/Chaetothyriales). T2 - 16th European Conference on Fungal Genetics CY - Innsbruck, Austria DA - 05.03.2023 KW - DHN melanin KW - Fungus KW - Biosynthesis PY - 2023 AN - OPUS4-57143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan T1 - Analysis of air pollutants in ambient and indoor aerosolsby TXRF - application examples N2 - Quantitative chemical analysis of airborne particulate matter (PM) is vital for the understanding of health effects in indoor and outdoor environments, as well as for enforcing air quality regulations. Typically, airborne particles are sampled over long time periods on filters, followed by lab-based analysis, e.g., with inductively coupled plasma mass spectrometry (ICP-MS). Within the EURAMET EMPIR AEROMET project, cascade impactor aerosol sampling was combined for the first time with on-site total reflection X-ray fluorescence (TXRF) spectroscopy to develop a tool for quantifying particle element compositions within short time intervals and even on-site. This makes variations of aerosol chemistry observable with time resolution of only a few hours and with good size resolution in the PM10 range. A proof of principles of this methodological approach and the comparison to standard methods within the scope of a field campaign will be presented. Secondly, aerosol sampling and TXRF analysis seems suitable for the quantification of elements in indoor aerosols as well and may provide an important enhancement of existing methods for the analysis of organic species in aerosols (such as sampling and TD-GC/MS). As an example, the TXRF analysis of particles emitted from laser printers under controlled conditions in an environmental test chamber will be presented. T2 - TXRF Journal ClubB CY - Online meeeting DA - 24.02.2022 KW - Aerosol KW - TXRF KW - Cascade impactor KW - ICP-MS KW - Particles KW - Air quality monitoring KW - Element mass concentration PY - 2022 AN - OPUS4-54418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerrits, Ruben A1 - Pokharel, R. A1 - Breitenbach, Romy A1 - Radnik, Jörg A1 - Wirth, R. A1 - Schuessler, J. A. A1 - Benning, L. G. A1 - von Blanckenburg, F. A1 - Gorbushina, Anna A1 - Feldmann, Ines T1 - Olivine weathering by the genetically amenable rock-inhabiting fungus Knufia petricola A95 N2 - In arid sun-exposed environments, rock-inhabiting fungi dominate microbial communities on rock surfaces. Fungi are known to enhance rock weathering, although the exact mechanisms are not completely understood. These natural processes can be simulated by reproducible experimental systems. Particularly attractive are genetically amenable rock-weathering fungi, where certain traits can be knocked-out to identify weathering-relevant functions. Here, we studied the effect of the rock-inhabiting fungus Knufia petricola A95 and its melanin-deficient mutant (ΔKppks) on the weathering of a Fe-bearing olivine. We examined the olivine dissolution kinetics and looked at the olivine-fungus interface. For the former we inoculated olivine powder with the fungus in batch and mixed flow reactors and analysed the medium solution by ICP-OES, for the latter biofilm-covered olivine sections from flow-through reactors were analysed by FIB-TEM. In general olivine dissolution was lower when olivine was incubated without fungi: the abiotic olivine dissolution rates were lowest and the surface of the abiotically reacted olivine sections showed no etching. Various chemical analyses show Fe (oxyhydr)oxide precipitation on top of the abiotically reacted olivine, indicating its role in inhibiting olivine dissolution. Both the wild type (WT) and ΔKppks solubilised and bound significant amounts of Fe released by olivine dissolution. Fe (oxyhydr)oxide precipitation was thus reduced, explaining the enhanced olivine dissolution in their presence. Particularly efficient at preventing Fe precipitation were attached WT cells: the inhibition of olivine dissolution almost completely disappeared. The attachment capacity of the WT is most likely caused by the production of WT-specific extracellular polymeric substances. Our presented experimental systems allowed the precipitation of Fe (oxyhydr)oxides and included a rock-inhabiting fungus and thus simulated weathering processes relevant to natural ecosystems. T2 - ISEB 2019 CY - Potsdam, Germany DA - 23.09.2019 KW - Olivine KW - Weathering KW - Fungus PY - 2019 AN - OPUS4-49585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kayser, Y. A1 - Pollakowski-Herrmann, Beatrix A1 - Hönicke, P. A1 - Friese, Carmen A1 - Seeger, Stefan A1 - Cara, E. A1 - Boarino, L. A1 - Gianotti, V. A1 - Laus, M. A1 - Beckhoff, Burkhard T1 - AEROMET – Traceable and reliable chemical analysis of aerosols by X-ray spectrometry N2 - Traceable and reliable chemical element analysis of aerosols by X-ray spectrometry was investigated using aerosol samples from field campaigns which have been measured in the GIXRF-beamline at BESSY. The reference-free XRF approach allows for a traceable analysis of the mass deposition. Traceable quantification by means of XRF can be transfered to benchtop instrumentation used in the laboratory Chemical and dimensional analysis of deposited aerosol allows for a comprehensive analysis of aerosols, e.g. for toxicity assessment and determination of the source The folowing elements could be identified and quantified in the field samples: Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Y, W, Pb. T2 - European Aerosol Conference EAC 2019 CY - Gothenburg, Sweden DA - 25.08.2019 KW - TXRF KW - Element mass concetration KW - Ambient aerosol KW - Cascade impactor PY - 2019 AN - OPUS4-49583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bucar, K. A1 - Zitnik, M. A1 - Stabile, L. A1 - Ozan, J. A1 - Seeger, Stefan T1 - Performance of a Sharp GP2Y low-cost aerosol PM sensor N2 - Simple particulate matter sensors are gaining popularity due to their low price, easy handling and good temporal resolution. In this presentation, we report on the performance of a Sharp optical PM sensor GP2Y1010AU0F, which costs less than 15 €. The sensor is built around an infrared emitting diode (ILED) and a phototransistor detecting the light scattered from the aerosol particle. An electronic circuit shapes the detected light in a pulsed signal. The manufacturer advises sampling the output signal 280 microseconds after the ILED pulse. The measured output voltage is an indicator of dust concentration. We have built two identical simple PM monitoring devices using Raspberry Pi 3 computer interfacing the PM sensor with Microchip’s MCP3002 ADC via SPI. The ADC is capable of more than 100 ksamples/s at 10-bit resolution. The Rpi3 was pulsing the sensor at 10Hz, digitizing and saving the data and sending the results wirelessly. Sensor’s output pulse shape was sampled with 10 microsecond time steps and saved, thus making offline analysis possible. A time jitter of output pulses can be observed and suggests a peak fitting as a better approach to the signal readout compared to the single sampling at a fixed time after pulse triggering We compared both methods. T2 - European Aerosol Coference EAC 2019 CY - Gothenburg, Sweden DA - 25.08.2019 KW - Aerosol KW - Low cost aerosol PM sensor KW - PM PY - 2019 AN - OPUS4-49581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Breitenbach, Romy A1 - Gerrits, Ruben A1 - Dementyeva, Polina A1 - Knabe, Nicole A1 - Schumacher, Julia A1 - Feldmann, Ines A1 - Radnik, Jörg A1 - Ryo, M. A1 - Gorbushina, Anna T1 - Data for "The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering" N2 - Data for the publication "The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering" (https://doi.org/10.1038/s41529-022-00253-1). It includes: - The Summary of the EPS concentration, EPS sugar components and EPS linkages. - The Summary of the XPS analysis of freeze-dried biofilm samples of all strains. - The Summary of the pH, Mg, SI and Fe concentration, biomass and olivine dissolution rate for each time point of all dissolution experiments. KW - Biofilms PY - 2022 DO - https://doi.org/10.26272/opus4-54901 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-54901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -