TY - CONF A1 - Nordholt, Niclas A1 - Schreiber, Frank A1 - Kanaris, Orestis T1 - Consequences of BAC tolerance for selection and evolution in the presence of antibiotics N2 - The exposure to antimicrobial substances drives the evolution of antimicrobial resistance. Biocides are antimicrobials used as disinfectants, antiseptics and preservatives. They find application on a large scale in the industrial and medical sector, but also in private households. In terms of mass, the worldwide use of biocides exceeds that of antibiotics. Thus, despite their important role in preventing the spread of pathogens, due to their ubiquity, biocides are suspected to be drivers of the antimicrobial resistance crisis. In our work at BAM we try to understand how biocides contribute to the emergence of AMR, what the underlying adaptation principles and mechanisms are and how they compare to those found for antibiotics. Within our group, I mainly focus on the following two questions: How does phenotypic heterogeneity in bacteria affect the ability to survive treatment with biocides? And what are the consequences of phenotypic heterogeneity for the evolution of resistance to biocides and antibiotics? I will share published and unpublished results which demonstrate that phenotypic heterogeneity can enable the survival of biocide treatment and, through this, facilitate the evolution of AMR. On the other hand, we find that adaptation to a biocide can unexpectedly impair the ability to evolve resistance against an antibiotic. T2 - FEMS summer school for postdocs 2022: Microbial Evolvability Mechanisms: Resistance, Biology, and Strategies to Defeat and Detect CY - Split, Croatia DA - 27.04.2022 KW - Disinfection KW - Biocides KW - Evolution KW - Resistance KW - Biocide tolerance PY - 2022 AN - OPUS4-54846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Effect of biocides on the evolution and spread of resistance N2 - Biocides used as material preservatives are in contact with various environments during direct application or passive leaching from protected materials. Antimicrobial resistance (AMR) is a global health problem and the environment is an important compartment for the evolution and transmission of AMR. Soil is an environment with a large reservoir of natural microbial communities and antimicrobial resistance (AMR) genes. Those natural microbial communities are frequently exposed to biocides used as material preservatives. Previous studies have shown that antibiotics, metals and pesticides affect the underlying processes of resistance evolution and spread; namely de novo mutagenesis and horizontal gene transfer by conjugation and transformation in microbial communities. However, it is unknown if active substances used in material preservatives are involved in these processes. We show that biocides used as material preservatives affect rates of mutation and conjugation in microorganism in a species- and substance-dependent manner, while rates of transformation are not directly affected. Our data highlights the importance of assessing the contribution of material preservatives on AMR evolution and spread in the environment. T2 - Microbiome Network Meeting CY - Berlin, Germany DA - 20.07.2022 KW - Biocides KW - Antimicrobial resistance KW - Horizontal gene transfer KW - Mutation rate PY - 2022 AN - OPUS4-56426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocides As Drivers For Antimicrobial Resistance Evolution In The Environment N2 - Antimicrobial resistance (AMR) is a global health problem with the environment being an important compartment for the evolution, selection and transmission of AMR. These processes are impacted by pollution with antibiotics. However, biocides used as disinfectants and material preservatives are major pollutants by far excceding the market for antibiotics in terms of mass. Our work shows that biocides have the potential to affect evolutionary processes towards AMR by increasing the rates of de-novo mutation and conjugation. These effects depend on the species and biocidal substance. Importantly, chlorhexidine and quaternary ammonium compounds (QACs) affect rates of mutation and conjugation at environmentally relevant concentrations in E. coli. Moreover, our results show a connection between the RpoS-mediated general stress and the RecA-linked SOS response with increased rates of mutation and conjugation, but not for all biocides. Furthermore, our work highlights the potential of biocides to contribute to selection and transmission of AMR. We show that the application of biocides, especially QAC disinfectants, leads to the rapid evolution of tolerance (i.e. increased survival) in adaptive laboratory evolution (ALE) experiments. The evolved tolerant strains have a selective advantage in the presence of environmentally-relevant concentrations of antibiotics, which could lead to the stabilization of biocide tolerance in environments where biocides and antibiotics co-occur (e.g. wastewater, animal stables). ALE experiments with biocide tolerant strains indicate a decreased evolvability of resistance to antibiotics. Taken together, our work shows the importance of assessing the contribution of biocides on evolution, selection and transmission of AMR in the environment. T2 - 6th Environmental Dimension of Antibiotic Resistance (EDAR6) CY - Gothenburg, Sweden DA - 22.09.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Biofilms KW - Biocides KW - Risk assessment PY - 2022 AN - OPUS4-56262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocide Resistance - Road to Risk Assessment N2 - This presentation details the current status of biocide resistance risk assessment and provides a roadmap for future activities. T2 - OECD, 6th Meeting of the Working Party on Biocides CY - Paris, France DA - 28.09.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides KW - Risk assessment PY - 2022 AN - OPUS4-56263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Stephan, Ina T1 - Development of a laboratory method to assess resistance development of microorganisms to biocides – An update N2 - This presentation describes the development of a laboratory method to assess resistance development of microorganisms to biocides and antimicrobial surfaces. T2 - The International Biodeterioration Research Group (IBRG) autumn meeting 2022 CY - Online meeting DA - 11.10.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides KW - Risk assessment PY - 2022 AN - OPUS4-56264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - BIOCIDE N2 - This presentation gives an overview about the BIOCIDE project performed with the Aquatic Pollutants joint call. T2 - Aquatic Pollutants TransNet workshop CY - Online meeting DA - 09.11.2022 KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides KW - Risk assessment KW - Wastewater PY - 2022 AN - OPUS4-56265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Selection of resistance by antimicrobials used in coatings N2 - Antimicrobial surfaces have broad use in multiple settings including touch surfaces in hospitals, implanted devices, or consumer products. Their aim is to support existing hygiene procedures, and to help combat the increasing threat of antimicrobial resistance. However, concerns have been raised over the potential selection pressure exerted by such surfaces, which might drive the evolution and spread of antimicrobial resistance. In my presentation, I will highlight the risks and knowledge gaps associated with resistance on antimicrobial surfaces by different processes including evolution by de novo mutations and horizontal gene transfer, and species sorting of inherently resistant bacteria dispersed onto antimicrobial surfaces. The latter process has the potential to select for antibiotic resistance via cross-resistance between traits that confer resistance to both the antimicrobial surface coating and antibiotics. Conditions in which antibiotics and antimicrobial coatings are present simultaneously (e.g. implants) will lead to more complex interactions that can either result in the selection for or against antibiotic resistance. We mapped these interactions between several antimicrobials and antibiotics on growth and selection of Pseudomonas aeruginosa. We find prevalent physiological (i.e. synergy and antagonism) and evolutionary (i.e. cross-resistance and collateral sensitivity) combination effects. Understanding these interactions opens the door to tailor therapeutic interventions to select against resistance. In additions, we need new methods and translational studies that investigate resistance development to antimicrobial surfaces under realistic conditions. Therefore, I will present recent developments in our lab on the development of such a method based on existing efficacy standards. T2 - 2021 Fall Meeting of the European Materials Research Society (E-MRS) CY - Online meeting DA - 20.09.2021 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Biofilms KW - Biocides PY - 2021 AN - OPUS4-53645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Biocides Used as Material Preservatives Modify Rates of De Novo Mutation And Horizontal Gene Transfer in Bacteria N2 - Antimicrobial resistance (AMR) is an important global health problem. The environment has been regocnized as an improtant compartment for the occurance, evolution and transmission of AMR. Biocides used as material preservatives are in contact with the environment and natural microbial communities through direct application and passive leaching from protected materials. It has been shown that environmental contaminants, such as antibiotics, metals and pesticides, can affect resistance evolution and spread by modifying the underlying processes of de novo mutagenesis, horizontal gene transfer and selection. However, it is unknown if material preservatives are involved in these processes and thereby can also drive AMR in the environment. Here, we investigate the effect of material preservatives on rates of de novo mutation and horizontal gene transfer (HGT) in Escherichia coli and the model soil microorganisms Acinetobacter baylyi and Bacillus subtilis. To this end, we determined the effects of material preservatives on the mutation rates and HGT with the Luria-Delbrück fluctuation assay and a conjugation assay with the broad host-range plasmid pKJK5 and a transformation assay. Our data shows that the quaternary ammonium compound DDAC, copper, the pyrethroid insecticide permethrin and the azole fungicide propiconazole significantly increase mutation rates in E. coli, whereas A. baylyi and B. subtilis are not significantly affected. Moreover, we show that the carbamate IPBC and the insecticide permethrin affect HGT in a concentration dependent manner. Investigations with reporter strains for bacterial stress response pathways show that induction of the general stress response (rpoS) and components of the SOS response (recA) underlie the effects of most biocides on mutation rates and HGT. Taken together, our data is important for assessing the contribution of biocides on AMR evolution and spread in the environment. T2 - World Microbe Forum (ASM, FEMS) CY - Online meeting DA - 20.06.2021 KW - Biocides KW - Horizontal gene transfer KW - Mutation rate PY - 2021 UR - https://www.abstractsonline.com/pp8/#!/9286/presentation/11692 AN - OPUS4-54211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection N2 - A presentation given at the VAAM conference 2022, summarizing our findings published in the research paper "Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection" T2 - Annual conference of the association for general and applied microbiology (VAAM) 2022 CY - Düsseldorf, Germany DA - 21.02.2022 KW - Persistence KW - Biocides KW - Evolution KW - Cross-resistance KW - Biocide tolerance KW - Disinfection PY - 2022 AN - OPUS4-54437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Schreiber, Frank T1 - Phenotypic heterogeneity in disinfection: sources and consequences for antimicrobial resistance N2 - A summary of projects here at BAM which investigate the influence of phenotypic heterogeneity on the outcome of disinfection and the influence on antimicrobial resistance. This presentation was given in the Theory Seminar of the Quantitative and Theoretical Biology group of Prof. Oliver Ebenhöh at HHU Düsseldorf T2 - Theory Seminar in the Quantitative and Theoretical Biology group at HHU Düsseldorf CY - Düsseldorf, Germany DA - 24.02.2022 KW - Disinfection KW - Biocides KW - Heterogeneity KW - Resistance PY - 2022 AN - OPUS4-54442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -