TY - JOUR A1 - Simon, Franz-Georg A1 - Vogel, Christian A1 - Kalbe, Ute T1 - Antimony and vanadium in incineration bottom ash – leaching behavior and conclusions for treatment processes N2 - Due to its large mineral fraction, incineration bottom ash (IBA) from municipal solid waste incineration is an interesting raw material that can be used for road construction or to produce secondary building materials. However, leaching chloride, sulfate, and potentially harmful heavy metals may cause problems in using IBA in civil engineering. Investigating leaching behavior is crucial for the assessment of the environmental compatibility of IBA applications. Various test procedures are available for that purpose. In the present study, a long-term leaching test of a wet-mechanically treated IBA was performed in a lysimeter for almost six years. While concentrations of chloride, sulfate and the majority of the heavy metals started to decrease rapidly with progressive liquid-to-solid ratio (L/S), antimony (Sb) and vanadium (V) behaved differently. At the beginning of the lysimeter test, the Sb and V concentrations were low, but after approximately one year of operation at an L/S ratio of around 0.8 L/kg, a steady increase was observed. It was shown that this increase is the result of low Ca concentrations due to the formation of CaCO3. With the data, the solubility products from Ca-antimonate and Ca-vanadate were calculated. The unusual leaching behavior of Sb and V should be kept in mind when considering field scenarios and evaluating the impact on the environment. KW - Bottom ash KW - Lysimeter KW - Leaching of waste materials KW - Secondary building materials PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534317 DO - https://doi.org/10.31025/2611-4135/2021.15115 SN - 2611-4135 VL - 16 SP - 75 EP - 81 PB - CISA CY - Padua AN - OPUS4-53431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Haas, Marco A1 - Pienkoß, Fabian A1 - Kwiatkowski, Robert T1 - Wet-mechanical treatment: Processing of bituminous road construction waste in a jigging machine N2 - Jigging machines are used in processing technology in many areas. Examples are the processing of coal, ores, and primary and secondary raw and waste materials. Even small differences in density are offen sufficient for successful sorting. In the work presented here, milled material from road construction waste contaminated with bitumen is to be separated from uncontaminated material. In this way, scarce landfill space could be saved and mineral material be returned to the material cycle. KW - Wet-mechanical treatment KW - Jig KW - Road construction waste PY - 2023 UR - https://www.at-minerals.com/de/artikel/aufbereitung-von-bitumenhaltigem-strassenaufbruch-in-einer-setzmaschine-4037512.html SN - 1434-9302 VL - 64 IS - 12 SP - 46 EP - 51 PB - Bauverlag BV GmbH CY - Gütersloh AN - OPUS4-59160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Holm, Olaf T1 - Resources from recycling and urban mining: Limits and prospects N2 - Direct and indirect effects (DIERec) of the recovery of secondary resources are in the range of 500 million tons per year in Germany; energy savings are 1.4 million TJ. These savings are between 10 and 20% of the total. The effects of materials recovery exceed those of energy recovery by far except for secondary plastic material, where DIERec from energy recovery is higher by factor of 2.7. Untapped potential for the recovery of secondary resources exists in the fine fraction of bottom ash from municipal solid waste incineration, mainly Cu and precious metals, and in urban mining. KW - Waste treatment KW - Secondary raw materials KW - Direct material input KW - Urban mining PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-453364 UR - https://digital.detritusjournal.com/articles/resources-from-recycling-and-urban-mining-limits-and-prospects/124 DO - https://doi.org/10.31025/2611-4135/2018.13665 SN - 2611-4135 VL - 02 SP - 24 EP - 28 PB - CISA Publisher CY - Padua, Italy AN - OPUS4-45336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Scholz, Philipp T1 - Sequential Extraction of Incineration Bottom Ash: Conclusions Regarding Ecotoxicity N2 - The classification of incineration bottom ash (IBA) as hazardous or non-hazardous according to ecotoxic hazard property HP14 is still under debate. In this context, only the compounds of Zn and Cu with the hazard statement code H410 are of relevance. With an approach based on the grouping of substances, it was shown that such substances are either readily water-soluble or slightly and sparingly soluble. The concentrations of readily soluble Cu and Zn compounds in IBA are far below the cut-off value of 0.1%. Slightly and sparingly soluble Zn and Cu compounds could be quantified in the first fraction of a four-step sequential extraction procedure. With the results from the complete sequence, the dimensionless synthesis toxicity index (STI) was calculated and was in the range of 494 to 1218 for the four investigated IBA samples. It was concluded that IBA can usually be classified as non-hazardous. KW - Incineration bottom ash KW - Hazard properties KW - Ecotoxicity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605262 UR - https://www.mdpi.com/2076-3417/14/13/5541 DO - https://doi.org/10.3390/app14135541 SN - 2076-3417 VL - 14 IS - 13 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-60526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Scholz, Philipp T1 - Sequential Extraction of Incineration Bottom Ash: Conclusions Regarding Ecotoxicity N2 - The classification of incineration bottom ash (IBA) as hazardous or non-hazardous according to ecotoxic hazard property HP14 is still under debate. In this context, only the compounds of Zn and Cu with the hazard statement code H410 are of relevance. With an approach based on the grouping of substances, it was shown that such substances are either readily water-soluble or slightly and sparingly soluble. The concentrations of readily soluble Cu and Zn compounds in IBA are far below the cut-off value of 0.1%. Slightly and sparingly soluble Zn and Cu compounds could be quantified in the first fraction of a four-step sequential extraction procedure. With the results from the complete sequence, the dimensionless synthesis toxicity index (STI) was calculated and was in the range of 494 to 1218 for the four investigated IBA samples. It was concluded that IBA can usually be classified as non-hazardous. KW - Incineration bottom ash KW - Hazard properties KW - Ecotoxicity KW - Sequential extraction PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605070 DO - https://doi.org/10.3390/app14135541 SN - 2076-3417 VL - 14 IS - 13 SP - 1 EP - 12 PB - MDPI AN - OPUS4-60507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -