TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Competence Center nano@BAM Welcomes ISO/TC 229 Meeting in Berlin N2 - The Competence Center nano@BAM is presented. Examples directly related to the activities of the ISO Technical Committee TC 229 Nanotechnologies as well as BAM projects on nano reference measurement procedures, nano reference materials and nano reference data sets are showed. T2 - The 32nd ISO/TC 229 IEC/TC 113 JWG2 General Meeting CY - Berlin, Germany DA - 06.11.2023 KW - ISO/TC 229 Nanotechnologies KW - Nanoparticles KW - Nano@BAM KW - Reference materials KW - Reference data KW - Reference procedures PY - 2023 AN - OPUS4-58814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - VAMAS Regional Report Germany N2 - Regional standardisation activities and how VAMAS can help in any way to promote activities are reported. Activities related to organisational updates, government initiatives/priorities (especially related to Materials), details of any strategy documents publicly available, networks within Germany and how we engage are presented. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 48th Steering Committee Meeting CY - New Delhi, India DA - 09.10.2023 KW - VAMAS KW - Standardisation PY - 2023 UR - https://www.nplindia.org/index.php/amcsnzt_2023/ AN - OPUS4-58572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aumont, Cédric T1 - Genomic innovations underlying the evolution of termite social behaviour N2 - The phylogeny of the Blattodea boasts a wide degree of sociality spanning from solitary cockroaches to advanced ecosystem-dominating higher termite societies. The emergence of sociality in the termites was associated with the acquisition of a diverse range of social structures and differential expression of specific gene network. Previous work has found evidence for a caste-specific social defence system in termites leading to an immune system that may favour group over individual defence. While preliminary work suggests a correlation between social transitions and a reduction of immune gene family diversity, the lack of available high-quality termite genomes hampers complete knowledge of the true diversity of immune gene evolution across termite phylogeny. Here, we report on the sequencing and assembly of 50 high-quality long-read-based genomes and 180 caste- and sex-specific brain transcriptomes across major termite and cockroach sister-branch lineage. We investigate the diversity and evolutionary history of immune genes across genomes, and the potential gene networks that have evolved with the emergence of termite sociality and some aspect of immune related behaviours. T2 - Invited talk at University Paris 13 CY - Villetaneuse, France DA - 27.02.2023 KW - Immune gene family KW - Gene network KW - Eusociality KW - Termite phylogeny KW - Group defence PY - 2023 AN - OPUS4-58300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mirabella, Francesca T1 - ToF-SIMS as a new tool for nano-scale investigation of ps-laser-generated surface structures on titanium substrates N2 - In recent years, the fabrication of laser-generated surface structures on metals such as titanium surfaces have gained remarkable interests, being technologically relevant for applications in optics, medicine, fluid transport, tribology, and wetting of surfaces. The morphology of these structures, and so their chemistry, is influenced by the different laser processing parameters such as the laser fluence, wavelength, pulse repetition rate, laser light polarization type and direction, angle of incidence, and the effective number of laser pulses per beam spot area. However, the characterization of the different surface structures can be difficult because of constraints regarding the analytical information from both depth and the topographic artifacts which may limit the lateral and depth resolution of elemental distributions as well as their proper quantification. A promising technique to investigate these structures even at the nano-scale is Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), a very surface sensitive technique that at the same time allows to perform depth-profiling, imaging and 3D-reconstruction of selected ion-sputter fragment distributions on the surface. In this study we combine chemical analyses such as Energy Dispersive X-ray spectroscopy (EDX) and high-resolution scanning electron microscopy (SEM) analyses with ToF-SIMS to fully characterize the evolution of various types of laser-generated micro- and nanostructures formed on Ti and Ti alloys at different laser fluence levels, effective number of pulses and at different pulse repetition rates (1 – 400 kHz), following irradiation by near-infrared ultrashort laser pulses (925 fs, 1030 nm) in air environment or under argon gas flow. We show how this combined surface analytical approach allows to evaluate alteration in the surface chemistry of the laser-generated surface structures depending on the laser processing parameters and the ambient environment. T2 - European Materials Research Society (EMRS) Fall Meeting 2021 CY - Online meeting DA - 20.09.2021 KW - ToF SIMS KW - Nano characterization PY - 2021 AN - OPUS4-53366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Nano and Advanced Materials - Competences at BAM and perspectives N2 - This presentation gives an overview about the competencies and the characterization possibilities of nanoparticles at BAT, based on this the development of the OECD TG 125 at BAM. It further describes research activities at BAM concerning the characterization of nanoparticles and the way to the digital representation of these characterization possibilities. It concludes with the challenges of a digital product passport (DPP) for nanomaterial based products and the need of a digital materials passport (DMP). Finally, the activities of BAM are presented which address the former mentioned challenges from ESRP and DPP. T2 - Austausch Helmholtz Hereon / Digipass & BAM CY - Berlin, Germany DA - 07.07.2025 KW - Nanomaterials KW - ESPR KW - DPP KW - Nano KW - Advanced Materials PY - 2025 AN - OPUS4-64974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Werder, Julia T1 - Gebäudebegrünung mit Biofilmen: Herausforderungen und Chancen N2 - Der Vortrag stellt die Ergebnisse der Forschungsarbeiten zur Biorezeptivität von Betonfassaden sowie der gezielten Applikation von Algen dominierten Biofilmen auf Betonfassaden vor. Insbesondere werden die Anforderungen an eine repräsentative Prüfmethode erläutert. T2 - BuGG-Tag der Forschung und Lehre Gebäudegrün 2024 CY - Leipzig, Germany DA - 26.09.2024 KW - Begrünung KW - Biorezeptivität KW - Beton KW - Biofilm PY - 2024 AN - OPUS4-62221 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aumont, Cédric T1 - Harnessing near-chromosome level quality genomes to explore the evolution of termite immunity N2 - The phylogeny of the Blattodea boasts a wide degree of sociality spanning from solitary cockroaches to advanced ecosystem-dominating higher termite societies. The emergence of sociality in termites was associated with the acquisition of a diverse range of social structures. Previous work has found evidence for a caste-specific social defence system in termites leading to an immune system that may favour group over individual defence. While preliminary work suggests a correlation between social transitions and a reduction of immune gene family diversity, the lack of available high-quality termite genomes hampers complete knowledge of the true diversity of immune gene evolution across termite phylogeny. Here, we report on the sequencing and near-chromosome level assembly of 48 high-quality long-read-based genomes across major termite and cockroach sister-branch lineages. We investigate the diversity and evolutionary history of immune genes across genomes, focusing particular attention on correlations between immune gene evolution and transitions in sociality over termite phylogeny. T2 - Royal Entomological Society Annual Meeting - Ento23 CY - University of Exeter, Falmouth, UK DA - 05.09.2023 KW - Immune gene family KW - Termite phylogeny KW - Eusociality KW - Group defence PY - 2023 AN - OPUS4-58296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aumont, Cédric T1 - Immune gene family diversity across insects and Blattodea N2 - Insecta is one of the most diverse phyla in the animal kingdom, with species living in all types of habitats encountering an even greater diversity of pathogens and parasites. Defence strategies against such harmful threats led to a variety of molecular mechanisms, ecological shifts, and genetic innovations. Gene families underlying the molecular basis of the immune responses have evolved within the boundaries given by the species ecology. Here, we explore the evolution of some emblematic immune gene families throughout the Insecta phylum shedding light on remarkable genetic events such as gene duplication or gene loss. We followed a workflow based on the Hidden Markov model to search for immune genes in 55 high-quality genomes of insects. We highlight the emergence of group defence in social species as an ecological shift that released selection pressure on immune gene families notably in Blattodea. Further, we draw attention to certain gene families and the link between their diversity and the specificities of the species’ microbiota. Overall, we report data on immune gene diversity in insects. T2 - International Conference for Blattodea Research CY - Münster, Germany DA - 03.04.2023 KW - Immune gene family KW - Genomics KW - Blattodea PY - 2023 AN - OPUS4-58298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - Evolutionary genomics of termite sociality N2 - Termite sociality is thought to have evolved around 150 million years ago and is therefore ancient. Reconstructing the transitions that led to the evolution of this group of ecologically dominant insect societies is challenging. We sought to address this by sequencing near-chromosome-quality genomes from the major solitary, subsocial and social lineages of termites and their nearest blattodean relatives. We present findings from a comparative analysis of the sequenced genomes, where we explore the molecular underpinnings of termite sociality, and seek to understand the evolutionary origins of termite castes. At a broader scale, we test the extent to which a two-step process involving an initial expansion of genomic elements in cockroaches followed by extensive genome rearrangements in termites, may have acted as an important mechanism of evolutionary change. We then ask whether specific genomic processes may have facilitated evolutionary novelty, for example, through the analysis of transposon-host gene associations across the social gradient. We also report on findings that combine genomes with brain transcriptomics to explore the mechanistic basis of termite phenotypic plasticity, thereby enabling a first large-scale comparative genomic analysis of the evolutionary origins of termite sociality. T2 - International Congress of Entomology (ICE) 2024 CY - Kyoto, Japan DA - 25.08.2024 KW - Termite KW - Reference genome KW - Genomics PY - 2024 AN - OPUS4-61648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aumont, Cédric T1 - Exploring the evolution of termite immunity across phylogeny, sociality and foraging behaviour N2 - The phylogeny of the Blattodea boasts a wide degree of sociality spanning from solitary cockroaches to advanced ecosystem-dominating termite societies. The emergence of sociality in termites was associated with the acquisition of a diverse range of social structures and caste-specific behaviours. From wood-dwelling to fungus-growing and cooperative scouting, termite foraging strategies require different immune defences to confront the diverse pathogens found in the foraging environment. Previous work has found evidence for a caste-specific social defence system in termites leading to an immune system that may favour group over individual defence. While preliminary work suggests a correlation between social transitions and a reduction of immune gene family diversity, the lack of available high-quality termite genomes hampers complete knowledge of the true diversity of immune gene evolution across termite phylogeny. Here, we report on the sequencing and near-chromosome level assembly of 47 high-quality long-read-based genomes across major termite and cockroach sister-branch lineages. We investigate the diversity and evolutionary history of immune genes across genomes, focusing on correlations between immune gene evolution, transitions in sociality and foraging behaviour diversity over termite phylogeny. T2 - ASAB Spring Meeting CY - Exeter, UK DA - 23.04.2024 KW - Termite KW - Immunity PY - 2024 AN - OPUS4-61695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -