TY - CONF A1 - Vogel, Christian A1 - Sekine, R. A1 - Steckenmesser, D. A1 - Lombi, E. A1 - Herzel, Hannes A1 - Zuin, L. A1 - Wang, D. A1 - Félix, R. A1 - Adam, Christian T1 - Combining diffusive gradients in thin films (DGT) and spectroscopic techniques for the determination of phosphorus species in soils N2 - A wide range of methods are used to estimate the plant-availability of soil phosphorus (P). Published research has shown that the diffusive gradients in thin films (DGT) technique has a superior correlation to plant-available P in soils compared to standard chemical extraction tests. In order to identify the plant-available soil P species, we combined DGT with infrared and P K- and L-edge X-ray adsorption near-edge structure (XANES) spectroscopy. This was achieved by spectroscopically investigating the dried binding layer of DGT devices after soil deployment. All three spectroscopic methods were able to distinguish between different kinds of phosphates (poly-, trimeta-, pyro- and orthophosphate) on the DGT binding layer. However, infrared spectroscopy was most sensitive to distinguish between different types of adsorbed inorganic and organic phosphates. Additionally, also intermediates of the time-resolved hydrolysis of trimetaphosphate in soil could be analyzed. Furthermore, infrared and XANES microspectroscopy make it also possible to analyze P compounds on the binding layer with a lateral resolution down to 1 µm2. Therefore, P species of a spatial soil segment (e.g. rhizosphere) can be mapped and analyzed. T2 - Phosphorus in Soil and Plants (PSP6) CY - Leuven, Belgium DA - 10.09.2018 KW - Soil P species KW - Spectroscopy KW - DGT PY - 2018 AN - OPUS4-45961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pietsch, Franziska A1 - Schreiber, Frank T1 - Selection of Resistance in Bacterial Biofilms Grown on Antimicrobial Surfaces in a Multidrug Environment N2 - Background Bacterial biofilms are regarded as the most common cause of chronic infections and are often associated with medical devices, such as implants and catheters. Bacteria growing in biofilms produce a protective, extracellular matrix, which enables them to tolerate much higher antimicrobial concentrations than free-living bacteria and survive long enough to acquire antimicrobial resistance. Preventive and therapeutic strategies against biofilm infections in clinical settings commonly involve the application of multiple antimicrobials: biocidal coatings on the biomaterials and systemically administered antibiotics. This frequent practice harbors the risk of the development of cross-resistance via shared resistance mechanisms between antimicrobials used in material coatings and administered antibiotics. Aim Our goal is to determine how bacteria adapt to antimicrobials during biofilm formation on surfaces coated with antimicrobials, how antimicrobial resistance mutations are acquired and evolve within mature biofilms, and how population dynamics within biofilms affect the transmission of resistance mutations. Specifically, we want to identify antimicrobial-antibiotic-combinations that select for and against antibiotic resistance in biofilms by following the population dynamics of resistant and susceptible strains in competition assays. Methodology We will grow biofilms of Pseudomonas aeruginosa on glass surfaces with and without antimicrobial coatings and expose them to antibiotics. Then we will track their physiological properties, evolutionary adaptations, and population dynamics. First, we will screen in vitro for combinations of antibiotics and antimicrobials that select for and against antibiotic resistance. Second, effective combinations will be chosen for in-depth investigations during bacterial adhesion and of mature biofilms of resistant and susceptible genotypes. Third, based on the outcome of the screen and the obtained mechanistic understanding we will choose a clinical example in which we study the relevance of our findings in biofilms grown in vivo. Relevance Studying the biointerfacial interactions between bacterial biofilms and medical devices in terms of population dynamics as well as on single cell level during multidrug selection will help us understand how drug resistance develops and spreads in persistent biofilm infections. Based on our findings we aim to provide clinical recommendations for improved administration of antibiotics/antimicrobials in combination with medical device materials in order to mitigate against biofilm associated antimicrobial resistance. T2 - Challenges and New Concepts in Antibiotic Research CY - Paris, France DA - 19.03.2018 KW - Resistance KW - Antimicrobials PY - 2018 AN - OPUS4-46398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Soil microbes are exposed to different environmental stressors originating from various sources. Biocides used as material preservatives can represent environmental stressors since they are in direct contact with the environment including soil. Microorganism in soils can adapt to stress by different mechanisms; for example, by the evolution of resistance by de novo mutations or acquisition of resistance genes via horizontal gene transfer (HGT). Here, we hypothesize that material preservatives could enhance the evolution of biocide resistance enabling the potential for cross-resistance to antibiotics. Furthermore, we hypothesize that material preservatives can cause increased frequencies of HGT (i.e. altered community permissiveness) facilitating microbial community adaptation to stress. We will culture soil microorganism with increasing concentrations of selected biocides followed by antibiotic susceptibility determination. Moreover, we will incubate soil mesocosms with selected biocides to investigate if these compounds promote HGT of plasmids that carry resistance genes in soil microbial communities. Together these results will elucidate the potential for the evolution of biocide resistance and cross-resistance to antibiotics as well as the effect of biocides on adaptation to environmental stressors in soil microbial communities. T2 - 17th International Symposium on Microbial Ecology CY - Leipzig, Germany DA - 12.08.2018 KW - Resistance evolution KW - Horizontal gene transfer HGT KW - Biocides KW - Microbiology PY - 2018 AN - OPUS4-46288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pietsch, Franziska A1 - Schreiber, Frank T1 - Selection of resistance in bacterial biofilms grown on antimicrobial surfaces in a multidrug environment N2 - Background Bacterial biofilms are regarded as the most common cause of chronic infections and are often associated with medical devices, such as implants and catheters. Bacteria growing in biofilms produce a protective, extracellular matrix, which enables them to tolerate much higher antimicrobial concentrations than free-living bacteria and survive long enough to acquire antimicrobial resistance. Preventive and therapeutic strategies against biofilm infections in clinical settings commonly involve the application of multiple antimicrobials: biocidal coatings on the biomaterials and systemically administered antibiotics. This frequent practice harbors the risk of the development of cross-resistance via shared resistance mechanisms between antimicrobials used in material coatings and administered antibiotics. Aim Our goal is to determine how bacteria adapt to antimicrobials during biofilm formation on surfaces coated with antimicrobials and how population dynamics within biofilms affect the transmission of resistance mutations. Specifically, we want to identify antimicrobial-antibiotic-combinations that select for and against antibiotic resistance in biofilms by following the population dynamics of resistant and susceptible strains in competition assays on a single cell level. Methodology To study the effect of antimicrobial-antibiotic exposure on resistance development and population dynamics on bacterial biofilms in a multidrug environment, we will grow Pseudomonas aeruginosa on glass surfaces with and without antimicrobial coatings and expose them to antibiotics. First, we will screen in vitro for combinations of antibiotics and antimicrobials that select for and against antibiotic resistance. Second, effective combinations will be chosen for in-depth investigations during bacterial adhesion and of mature biofilms of resistant and susceptible genotypes. Third, based on the outcome of the screen and the obtained mechanistic understanding we will choose a clinical example in which we study the relevance of our findings in biofilms grown in vivo. Relevance Studying the biointerfacial interactions between bacterial biofilms and medical devices in terms of population dynamics as well as on single cell level during multidrug selection will help us understand how drug resistance develops and spreads in persistent biofilm infections. Based on our findings we aim to provide clinical recommendations for improved administration of antibiotics/antimicrobials in combination with medical device materials in order to mitigate against biofilm associated antimicrobial resistance. T2 - Biofilms 8 Conference CY - Aarhus, Denmark DA - 27.05.2018 KW - Resistance KW - Antimicrobials PY - 2018 AN - OPUS4-46524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Persistence as a microbial survival strategy against disinfectants N2 - Antimicrobial resistance is a major threat to human health. The prevalence of multi-drug resistant (MDR) bacteria is predicted to increase in the future requiring robust control strategies. One cornerstone to prevent the spread of MDR bacteria in clinical settings is the application of disinfectants to improve hygiene standards. However, bacteria can evolve resistance to disinfectants, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than the majority of the population. Our results in E. coli indicate that persistence is a bacterial survival strategy against benzalkonium chloride, a widely used disinfectant. In future experiments, we will investigate the evolution of persistence in the face of fluctuating exposure to disinfectants and whether persistence facilitates resistance against disinfectants. Lastly, we will test how tolerance and resistance against disinfectants affects susceptibility against antibiotics. T2 - Bridging Ecology and Molecular Biology: Organismic Responses to Recurring Stress CY - Berlin, Germany DA - 09.04.2018 KW - Bacteria KW - Persistence KW - Resistance KW - Biocides PY - 2018 N1 - Geburtsname von Schmidt, Selina: Broska, S. - Birth name of Schmidt, Selina: Broska, S. AN - OPUS4-44667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Priming in soil microbial communities mediated by biocide-induced horizontal gene-transfer N2 - Soil microbes are exposed to different environmental stressors originating from various sources. Biocides used as material preservatives can represent environmental stressors since they are in direct contact with the environment including soil. Microorganism in soils can adapt to stress by different mechanisms; for example, by transferring mobile genetic elements via horizontal gene transfer (HGT). Here, we hypothesize that material preservatives can cause increased frequencies of HGT (i.e. altered community permissiveness) facilitating microbial community adaptation to stress. Furthermore, we hypothesize that soil microbial communities are primed by biocide exposure facilitating the response to different types of stresses. We will incubate soil mesocosms with selected biocides to investigate if these compounds promote HGT of plasmids that carry resistance genes in soil microbial communities. Subsequently, we will prime the soil microbial community with sub-inhibitory concentrations of biocides followed by exposure to toxic biocide concentrations or other types of common environmental stresses including metals, antibiotics, and salt. Using suitable control experiments, a shift in the functional response of the primed as compared to the non-primed community would indicate that biocides prime microbial communities via HGT. Together these results will elucidate the effect of biocides on HGT-mediated adaptation to environmental stressors in soil microbial communities. T2 - SFB973 Stress Symposium CY - Berlin, Germany DA - 09.04.2018 KW - Resistance evolution KW - Horizontal gene transfer HGT KW - Biocides KW - Microbiology PY - 2018 AN - OPUS4-46285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Priming in soil microbial communities mediated by biocide-induced horizontal gene-transfer N2 - Soil microbes are exposed to different environmental stressors originating from various sources. Biocides used as material preservatives can represent environmental stressors since they are in direct contact with the environment including soil. Microorganism in soils can adapt to stress by different mechanisms; for example, by transferring mobile genetic elements via horizontal gene transfer (HGT). Here, we hypothesize that material preservatives can cause increased frequencies of HGT (i.e. altered community permissiveness) facilitating microbial community adaptation to stress. Furthermore, we hypothesize that soil microbial communities are primed by biocide exposure facilitating the response to different types of stresses. We will incubate soil mesocosms with selected biocides to investigate if these compounds promote HGT of plasmids that carry resistance genes in soil microbial communities. Subsequently, we will prime the soil microbial community with sub-inhibitory concentrations of biocides followed by exposure to toxic biocide concentrations or other types of common environmental stresses including metals, antibiotics, and salt. Using suitable control experiments, a shift in the functional response of the primed as compared to the non-primed community would indicate that biocides prime microbial communities via HGT. Together these results will elucidate the effect of biocides on HGT-mediated adaptation to environmental stressors in soil microbial communities. T2 - BAM PhD Day 2018 CY - Berlin, Germany DA - 31.05.2018 KW - Resistance evolution KW - Horizontal gene transfer HGT KW - Biocides KW - Microbiology PY - 2018 AN - OPUS4-46286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Schreiber, Frank A1 - Koerdt, Andrea T1 - Investigating the effects of biocides and corrosion inhibitors on corrosive methanogens N2 - Microbiologically influenced corrosion (MIC) is the deterioration of metals due to the metabolic activities of microorganisms. Microorganisms can take electrons directly from the metal surface (EMIC) thereby causing corrosion. Well known culprits of EMIC are: sulfate-reducing bacteria (SRB), acetogens and methanogens. Our aims - Develop a novel flow system to study MIC by methanogens to mimic industrial Environments - Investigate the inhibitory concentrations of biocides targeting SRB on corrosive methanogenic strains - Investigate the inhibitory effects of corrosion inhibitors on methanogens - Compare the inhibitory concentrations to SRB T2 - BAM meeting CY - BAM, Berlin, Germany DA - 06.06.2018 KW - MIC projekt KW - Mikrobiell beeinflusste Korrosion KW - Microbiologically influenced corrosion KW - Korrosion KW - Corrosion KW - Material degradation KW - Biocide PY - 2018 AN - OPUS4-46010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Schreiber, Frank T1 - Investigating the effects of biocides and corrosion inhibitors on corrosive methanogens N2 - Microbiologically influenced corrosion (MIC) is the deterioration of metals due to the metabolic activities of microorganisms. Microorganisms can take electrons directly from the metal surface (EMIC) thereby causing corrosion. Well known culprits of EMIC are: sulfate-reducing bacteria (SRB), acetogens and methanogens. T2 - AMiCI WG2 workshop Berlin CY - Berlin, Germany DA - 7.7.2018 KW - Corrosion KW - Biocides KW - Methanogens PY - 2018 AN - OPUS4-45734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Franz-Georg A1 - Chubarenko, B. A1 - Purina, I. T1 - Approach for analysis of environmental impact of geosynthetics in aquatic systems by example of the Baltic Sea N2 - Whereas the behavior of geosynthetics in landfill engineering is well studied and documented since decades, little is known on application in applications such as coastal protection or ballast layers for wind energy plants. However, due to the rapid expansion of offshore wind energy, rising water levels and more extreme weather conditions as a result of climate change more and more hydraulic engineering projects will be realized in the future. Construction with geosynthetics has various advantages, but it has to be ensured that there is no negative environmental impact from the application of geosynthetics in hydraulic engineering. It is expected that any effect will be visible only on the long-term. Therefore, accelerated testing is needed to derive requirements for geosynthetics in hydraulic engineering. T2 - 7th IEEE/OES Baltic Symposium, Clean and Safe Baltic Sea and Energy Security for the Baltic countries CY - Klaipeda, Lithuania DA - 12.06.2018 KW - Geosynthetics KW - Artificial ageing KW - Micro plastic PY - 2018 AN - OPUS4-45206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -