TY - JOUR A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P.M. A1 - Unger, Wolfgang T1 - NAP-XPS spectra of the bacterial cell-envelope of Pseudomonas fluorescens bacteria N2 - Pseudomonas fluorescens (Gram-negative) bacteria purchased from Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures were analyzed using high-resolution x-ray photoelectron spectroscopy at near ambient pressure conditions (NAP-XPS), 1500 Pa water vapor atmosphere. Fresh layers of P. fluorescence bacteria were grown on Luria Broth agar plates. Bacteria were taken from the agar plate with a sterile spatula and gently spread on a Si-wafer piece for NAP-XPS analysis. The NAP-XPS spectra of the bacterial envelope of P. fluorescence were obtained using monochromatic Al Kα radiation and include a survey scan and high-resolution spectra of C 1s, N 1s, P 2p, and O 1s as well. The presentation of the C 1s high-resolution spectrum includes the results of peak fitting analysis. KW - Pseudomonas fluorescens KW - Cell-envelope KW - Water atmosphere KW - Near ambient x-ray photoelectron spectroscopy KW - NAP-XPS PY - 2022 DO - https://doi.org/10.1116/6.0001543 SN - 1055-5269 VL - 29 IS - 1 SP - 014008-1 PB - AVS AN - OPUS4-54464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vigna, L. A1 - Gottschalk, Martin A1 - Cacocciola, N. A1 - Verna, A. A1 - Marasso, S. L. A1 - Seeger, Stefan A1 - Pirri, C.F. A1 - Cocuzza, M. T1 - Flexible and reusable parylene C mask technology for applications in cascade impactor air quality monitoring systems N2 - The development of traceable new methodologies to quantify elemental air pollutants in particulate matter (PM) supports modernization of methods used in air quality monitoring networks in Europe. In the framework of the EURAMET EMPIR AEROMET II project, the combination of cascade impactor aerosol sampling and total reflection X-ray fluorescence elemental spectroscopy (TXRF) was investigated. This technique requires a traceable calibration based on reference samples. This paper describes a new, simple and effective method to produce such reference samples using flexible, reusable, and low-cost parylene C shadow masks, fabricated by photolithographic steps. These shadow masks can be used to produce reference samples that mimic the Dekati cascade impactor’s deposition patterns by applying as-prepared micro stencils to 30 mm acrylic substrates and evaporating a reference material (Ti) in arrangements of thin circular dots. The highly flexible direct patterning of acrylic discs with reference material, otherwise impossible with conventional photolithography, allows multiple reusing of the same micro stencils. The aspect ratios of the dots could be repeated with an error less than 4 %. A first set of standard reference samples for the 13 stages of the Dekati cascade impactor was produced and preliminary TXRF measurements of the deposited Ti masses were performed. The centricity of the deposition patterns turned out to be an important parameter for the quality of the TXRF results. The parylene mask technology for the production of reference samples turns out to be a promising new approach for the traceable calibration of TXRF spectrometers for the quantification of element concentrations in environmental aerosol samples but, due to its great versatility, it could be used for several other micropatterning applications on conventional and unconventional substrates. KW - AEROMET II KW - Aerosol KW - Parylene C KW - Reference samples KW - Flexible shadow masks KW - Cascade impactor KW - Air quality monitoring KW - Micropatterning KW - Mask fabrication KW - Elemental aerosol analysis KW - TXRF PY - 2022 DO - https://doi.org/10.1016/j.mne.2022.100108 SN - 2590-0072 VL - 14 SP - 1 EP - 19 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-54252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raniro, H.R. A1 - Soares, T.de M. A1 - Adam, Christian A1 - Pavinato, P.S. T1 - Waste-derived fertilizers can increase phosphorus uptake by sugarcane and availability in a tropical soil N2 - The use of highly water-soluble phosphorus (P) fertilizers can lead to P fixation in the soil, reducing fertilization efficiency. Waste-derived, low water-solubility sources can potentially increase sugarcane’s P uptake compared to triple superphosphate by reducing adsorption to the soil. Aims:We aimed to test struvite, hazenite, and AshDec® for their agronomic potential as recycled fertilizers for sugarcane production in a typical tropical soil.We hypothesize that these sources can reduce P fixation in the soil, increasing its availability and sugarcane’s absorption. Methods: In a greenhouse pot experiment, two consecutive sugarcane cycles, 90 days each, were conducted in a Ferralsol. The recovered sources struvite, hazenite, AshDec®, and the conventional triple superphosphate were mixed in the soil in three P doses (30, 60, and 90 mg kg–1), aside a control (nil-P). At both harvests, sugarcane number of sprouts, plant height, stem diameter, dry mass yield, shoot phosphorus, and soil P fractionation were investigated. Results: At 90 days, struvite and hazenite performed better for dry mass yield (70.7 and 68.3 g pot–1, respectively) than AshDec® and triple superphosphate (59.8 and 57.4 g pot–1, respectively) and for shoot P, with 98.1, 91.6, 75.6, and 66.3 mg pot–1, respectively. At 180 days, struvite outperformed all treatments for dry mass yield (95.3 g pot–1) and AshDec® (75.5 mg pot–1) for shoot P. Struvite was 38% and hazenite 21% more efficient than triple superphosphate in P uptake, while AshDec® was 6% less efficient. Soil had higher labile P under struvite, hazenite, and AshDec® than triple superphosphate by the end of the first cycle, while only the later increased nonlabile P by the end of the experiment (180 days). Conclusions:Waste-derived P sources were more efficient in supplying P for sugarcane and delivering labile P in 180 days than triple superphosphate. KW - AshDec KW - Hazenite KW - P-efficiency KW - Recycled sources KW - Struvite PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544216 DO - https://doi.org/10.1002/jpln.202100410 SN - 1436-8730 SP - 1 EP - 12 PB - Wiley-VCH GmbH AN - OPUS4-54421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, S. A1 - Voss, L. A1 - Stephan, Ina A1 - Hübert, Thomas A1 - Kemnitz, E. T1 - Improved Durability of Wood Treated with Nano Metal Fluorides against Brown-Rot and White-Rot Fungi N2 - Low-water soluble metal fluorides such as magnesium fluoride (MgF2) and calcium Fluoride (CaF2) were evaluated for decay protection of wood. Initially, the biocidal efficacy of nano metal fluorides (NMFs) against wood destroying fungi was assessed with an in-vitro agar test. The results from the test showed that agar medium containing MgF2 and CaF2 was more efficient in preventing fungal decay than stand-alone MgF2 or CaF2. These metal fluorides, in their nanoscopic form synthesized using fluorolytic sol-gel synthesis, were introduced into the sapwood of Scots pine and beech wood and then subjected to accelerated ageing by leaching (EN 84). MAS 19F NMR and X-ray micro CT images showed that metal fluorides were present in treated wood, unleached and leached. Decay resistance of Scots pine and beech wood treated with NMFs was tested against Wood destroying fungi Rhodonia placenta and Trametes versicolor in accordance with EN 113. Results revealed that mass losses were reduced to below 3% in wood treated with the combination of MgF2 and CaF2. It is concluded that NMFs provide full protection to wood even after it has been leached and can be used as wood preservatives in outdoor environments. KW - Nanoparticles KW - Fluoride KW - Wood protection KW - Fluorolytic sol-gel synthesis KW - Brown-rot fungi KW - White-rot fungi KW - Basidiomycetes PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543877 DO - https://doi.org/10.3390/app12031727 VL - 12 IS - 3 SP - 1 EP - 11 PB - MDPI AN - OPUS4-54387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - von der Au, Marcus A1 - Wittwer, Phillip A1 - Roesch, Philipp A1 - Pfeifer, Jens A1 - Cossmer, Antje A1 - Meermann, Björn T1 - A fast and simple PFAS extraction method utilizing HR–CS–GFMAS for soil samples N2 - Here, we describe an optimized fast and simple extraction method for the determination of per- and polyfluorinated alkyl substances (PFASs) in soils utilizing high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR–CS–GFMAS). To omit the bias of the solid phase extraction (SPE) step commonly used during the analysis of extractable organically bound fluorine (EOF) we optimized a fast and simple SPE-free extraction method. The developed extraction method consists of a liquid-solid extraction using acidified methanol without any additional SPE. Four extraction steps were representative to determine a high proportion of the EOF (>80% of eight extractions). Comparison of the optimized method with and without an additional SPE clean-up step revealed a drastic underestimation of EOF concentrations using SPE. Differences of up to 94% were observed which were not explainable by coextracted inorganic fluoride. Therefore, not only a more accurate but also a more economic as well as ecologic method (bypassing of unnecessary SPE) was developed. The procedural limit of quantification (LOQ) of the developed method was 10.30 μg/kg which was sufficient for quantifying EOF concentrations in all tested samples. For future PFAS monitoring and potential regulative decisions the herein presented optimized extraction method can offer a valuable contribution. KW - Per- and polyfluorinated alkly substances (PFASs) KW - High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) KW - Soils KW - Solid phase extraction (SPE) KW - Extractable organically bound fluorine (EOF) KW - Solid-liquid extraction PY - 2022 DO - https://doi.org/10.1016/j.chemosphere.2022.133922 VL - 295 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-54359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Golian, M. A1 - Bien, T. A1 - Schmelzle, S. A1 - Esparza- Mora, M. A. A1 - McMahon, Dino Peter A1 - Dreisewerd, K. A1 - Buellesbach, J. ED - Appel, Arthur G. T1 - Neglected Very Long-Chain Hydrocarbons and the Incorporation of Body Surface Area Metrics Reveal Novel Perspectives for Cuticular Profile Analysis in Insects N2 - Most of our knowledge on insect cuticular hydrocarbons (CHCs) stems from analytical techniques based on gas-chromatography coupled with mass spectrometry (GC-MS). However, this method has its limits under standard conditions, particularly in detecting compounds beyond a chain length of around C40. Here, we compare the CHC chain length range detectable by GC-MS with the range assessed by silver-assisted laser desorption/ionization mass spectrometry (Ag-LDI-MS), a novel and rarely applied technique on insect CHCs, in seven species of the order Blattodea. For all tested species, we unveiled a considerable range of very long-chain CHCs up to C58, which are not detectable by standard GC-MS technology. This indicates that general studies on insect CHCs May frequently miss compounds in this range, and we encourage future studies to implement analytical techniques extending the conventionally accessed chain length range. Furthermore, we incorporate 3D scanned insect body surface areas as an additional factor for the comparative quantification of extracted CHC amounts between our study species. CHC quantity distributions differed considerably when adjusted for body surface areas as opposed to directly assessing extracted CHC amounts, suggesting that a more accurate evaluation of relative CHC quantities can be achieved by taking body surface areas into account. KW - Cuticular hydrocarbons KW - Blattodea KW - GC-MS KW - Ag-LDI-MS KW - Chemical ecology PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543530 DO - https://doi.org/10.3390/insects13010083 VL - 13 IS - 1 SP - 2 EP - 10 PB - MDPI CY - Basel, Schweiz AN - OPUS4-54353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Armitage, S. AO A1 - Genersch, E. A1 - McMahon, Dino Peter A1 - Rafaluk-Mohr, C. A1 - Rolff, J. ED - Milutinovic, B. ED - Armitage, S. AO T1 - Tripartite interactions: how immunity, microbiota and pathogens interact and affect pathogen virulence evolution$ N2 - The bipartite interactions between insect hosts and their bacterial gut microbiota, or their bacterial pathogens, are empirically and theoretically well-explored. However, direct, and indirect tripartite interactions will also likely occur inside a host. These interactions will almost certainly affect the trajectory of pathogen virulence evolution, an area that is currently under researched. The interactions within tripartite associations can be competitive, that is, exploitative-competition, interference-competition or apparent-competition. Competitive interactions will be significantly influenced by non-competitive effects, for example, immunopathology, immunosuppression, and microbiota-mediated tolerance. Considering a combination of these interactions and effects, will enable an increased understanding of the evolution of pathogen virulence. This new perspective allows us to identify several novel research questions, which we hope will be a useful framework for future research. KW - Tripartite interactions KW - Community-level interactions KW - Microbiota KW - Pathogen virulence KW - Host immunity PY - 2022 DO - https://doi.org/10.1016/J.cois.2021.12.011 VL - 50 SP - 1 EP - 8 PB - Elsevier Inc. CY - Amsterdam, Netherlands AN - OPUS4-54357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abdallah, Khaled A1 - Stock, S. C. A1 - Heeger, Felix A1 - Koester, M. A1 - Nájera, F. A1 - Merino, C. A1 - Spielvogel, S. A1 - Gorbushina, Anna A1 - Kuzyakov, Y. A1 - Dippold, M. A. T1 - Nitrogen Gain and Loss Along an Ecosystem Sequence: From Semi-desert to Rainforest N2 - Plants and microorganisms, besides the climate, drive nitrogen (N) cycling in ecosystems. Our objective was to investigate N losses and N acquisition strategies along a unique ecosystem-sequence (ecosequence) ranging from arid shrubland through Mediterranean woodland to temperate rainforest. These ecosystems differ in mean annual precipitation, mean annual temperate, and vegetation cover, but developed on similar granitoid soil parent material, were addressed using a combination of molecular biology and soil biogeochemical tools. Soil N and carbon (C) contents, δ15N signatures, activities of N acquiring extracellular enzymes as well as the abundance of soil bacteria and fungi, and diazotrophs in bulk topsoil and rhizosphere were determined. Relative fungal abundance in the rhizosphere was higher under woodland and forest than under shrubland. This indicates toward plants' higher C investment into fungi in the Mediterranean and temperate rainforest sites than in the arid site. Fungi are likely to decompose lignified forest litter for efficient recycling of litter-derived N and further nutrients. Rhizosphere—a hotspot for the N fixation—was enriched in diazotrophs (factor 8 to 16 in comparison to bulk topsoil) emphasizing the general importance of root/microbe association in N cycle. These results show that the temperate rainforest is an N acquiring ecosystem, whereas N in the arid shrubland is strongly recycled. Simultaneously, the strongest 15N enrichment with decreasing N content with depth was detected in the Mediterranean woodland, indicating that N mineralization and loss is highest (and likely the fastest) in the woodland across the continental transect. Higher relative aminopeptidase activities in the woodland than in the forest enabled a fast N mineralization. Relative aminopeptidase activities were highest in the arid shrubland. The highest absolute chitinase activities were observed in the forest. This likely demonstrates that (a) plants and microorganisms in the arid shrubland invest largely into mobilization and reutilization of organically bound N by exoenzymes, and (b) that the ecosystem N nutrition shifts from a peptide-based N in the arid shrubland to a peptide- and chitin-based N nutrition in the temperate rainforest, where the high N demand is complemented by intensive N fixation in the rhizosphere. KW - Nitrogen KW - Rhizosphere KW - Microbial abundance KW - Natural abundance of 15N KW - Nitrogen fixation KW - Nitrogen uptake PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543708 DO - https://doi.org/10.3389/fsoil.2022.817641 SN - 2673-8619 VL - 2 SP - 1 EP - 14 PB - Frontiers Media CY - Lausanne AN - OPUS4-54370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schoknecht, Ute A1 - Tietje, O. A1 - Borho, N. A1 - Burkhardt, M. A1 - Rohr, M. A1 - Vollpracht, A. A1 - Weiler, L. T1 - Environmental impact of construction products on aquatic systems - Principles of an integrated source-path-target concept N2 - Buildings exposed to water can release undesirable substances which, once transported to environmental compartments, may cause unwanted effects. These exposure pathways need to be investigated and included in risk assessments to safeguard water quality and promote the sustainability of construction materials. The applied materials, exposure conditions, distribution routes and resilience of receiving compartments vary considerably. This demonstrates the need for a consistent concept that integrates knowledge of emission sources, leaching processes, transport pathways, and effects on targets. Such a consistent concept can serve as the basis for environmental risk assessment for several scenarios using experimentally determined emissions. Typically, a source–path–target concept integrates data from standardized leaching tests and models to describe leaching processes, the distribution of substances in the environment and the occurrence of substances at different points of compliance. This article presents an integrated concept for assessing the environmental impact of construction products on aquatic systems and unravels currently existing gaps and necessary actions. This manuscript outlines a source–path–target concept applicable to a large variety of construction products. It is intended to highlight key elements of a holistic evaluation concept that could assist authorities in developing procedures for environmental risk assessments and mitigation measures and identifying knowledge gaps. KW - Construction products KW - Environmental impact KW - Assessment KW - Concept PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542175 DO - https://doi.org/10.3390/w14020228 SN - 2073-4441 VL - 14 IS - 2 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-54217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weiler, L. A1 - Pfingsten, J. A1 - Eickhoff, H. A1 - Geist, I. A1 - Hilbig, H. A1 - Hornig, U. A1 - Kalbe, Ute A1 - Krause, K. A1 - Kautetzky, D. A1 - Linnemann, V. A1 - Gschwendtner, M. A1 - Lohmann, D. A1 - Overeem-Bos, E. A1 - Schwerd, R. A1 - Vollpracht, A. T1 - Improving consistency at testing cementitious materials in the Dynamic Surface Leaching Test on the basis of the European technical specification CENTS 16637–2 – Results of a round robin test N2 - The environmental impact assessment of materials is usually based on laboratory tests, mostly in combination with models describing the longterm fate of the substances of interest in the targeted environmental compartment. Thus, laboratory tests are the fundamental link to achieve appropriate assessment conclusions which makes it essential to generate consistent results. This just as applies to the leaching of cementitious materials. In Europe, the leaching behavior of monolithic building materials is tested in the Dynamic Surface Leaching Test following the specification CEN/TS 16637–2. An interlaboratory comparison on European level regarding this technical specification showed relatively high intra- and interlaboratory variations for the tested materials (monolithic copper slag and cement stabilized coal fly ash). Therefore the German Committee for Structural Concrete (DAfStb) framed a guideline to specify additional testing conditions for cementitious materials. To assess the possible improvement by this guidelines measures, a round robin test with 11 participants from Germany and the Netherlands was conducted. This work aims to provide insight into the factors to be considered in the testing of alkaline materials, including sample preparation, and highlights crucial procedures and their manifestation in the results. All evaluated parameters showed improved results compared to the earlier round robin test. The relative standard deviations for repeatability (RSDr) and reproducibility (RSDR) of the elements calcium, barium, antimony, chromium, molybdenum and vanadium, which are the parameters evaluated in both round robin tests, were RSDr = 4%, 4%, 2%, 5%, 5%, and 5% respectively (4% in average) for this work, in comparison to the European round robin test with an average RSDr of 29% (17%, 17%, 20%, 40%, 36%, and 42%). The RSDR improved from 41% (30%, 36%, 29%, 57%, 40%, and 56%) to 14% (12%, 8%, 6%, 28%, 15%, and 12%). CO2 ingress during testing and the inaccuracy of eluate analytics for concentrations close to the determination limits were identified as the main sources of error. KW - Environmental assessment KW - Leaching KW - Heavy metals KW - Round robin test KW - Building Material PY - 2022 DO - https://doi.org/10.1016/j.jenvman.2022.114959 SN - 0301-4797 VL - 314 SP - 1 EP - 9 PB - Elsevier CY - Amsterdam AN - OPUS4-54647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -