TY - CONF A1 - Koerdt, Andrea A1 - Annie, Biwen A1 - Rene, Hesse A1 - Askar, Enis A1 - Ji Zheng, Yao A1 - Sobol, Oded A1 - Kunte, Hans-Jörg T1 - The impact and potential of halophilic microorganisms on alternative fuels N2 - As more industrial interests focusing on using salt caverns and repurposed gas or petroleum reservoirs for alternative fuel storage, i.e. CO2/H2, the question raises whether microorganisms may impact the infrastructure, gas purity and storage condition over time. Environments with high salinity (> 1.5 Meq of NaCl) are resided by halophiles (salt-loving microorganisms). To compensate for the intensive osmotic stress, they have resorted to two main adaptation strategies: 1) production of compatible solutes and 2) accumulation of intracellular KCl. Microbial community analysis of several high salinity environments revealed a number of recurring genera, including Halomonas and Halanaerobium. However, the impact of halophiles on the overall integrity and stability of the storage facilities remain largely unknown. To evaluate the suitability and stability of saline storage facilities, several model halophilic microorganisms, such as members of Halomonas, will be selected as testing subjects. First, the impact of halophiles on the infrastructure will be determined using an integrative approach by combining a number of techniques, including electrochemistry, TOF-SIMS, SEM/FIB/EDS and FIB-TEM. Second, the abilities of halophiles to alter the fuel composition (i.e. increase/decrease the fractions of H2) will be monitored using gas chromatography by growing them under high pressure. As a result of climate change and the accompanying mandatory shift to renewable energy resources, microorganisms will continue to play an important role in the energy sector, both to their benefit and detriment. Thus, it is important to achieve a certain level of understanding regarding the activities and mechanisms of halophiles prior to large-scaled excursions. T2 - ISMOS-8 CY - Online meeting DA - 07.06.2021 KW - Microbiologically influenced corrosion KW - Hydrogen KW - Gas storage KW - Contamination PY - 2021 AN - OPUS4-52891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Surface characterisation of bacteria and biofilms by NAP-XPS N2 - The XPS information depth of approximately 10 nm is in the same size range as the outer membrane of the gram-negative bacteria, which makes XPS a suitable tool for determining the elemental composition of the bacterial surface and monitor changes caused by outer stress like dehydration or exposure to antimicrobials. However, bacteria are inherently in a hydrated state, and therefore only compatible to ultra-high vacuum after extensive sample preparation, which may degrade the sample constituents. This issue is addressed by the development of near-ambient pressure (NAP)-XPS, which enables bacteria and biofilms to be characterised in their native wet state. Artificial biofilms, bacteria and biofilms of Escherichia coli have been characterised with the laboratory NAP-XPS instrument EnviroESCA from SPECS GmbH, at pressures ranging from high vacuum to 12 mbar, and in both humid and dry environment. By studying biological samples in their native wet state, new insight about composition and transport of drugs through cell membranes and the extracellular polymeric substance (EPS) of biofilms can be obtained. In this contribution, the latest progress on biofilm characterisation by NAP-XPS will be presented, and measurement capabilities and limitations will be discussed. T2 - Die Frühjahrstagung der Deutsche Physikalische Gesellschaft CY - Berlin, Germany DA - 12.03.2018 KW - Biofilms KW - E. coli KW - Alginate KW - NAP-XPS PY - 2018 AN - OPUS4-44500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin A1 - Unger, Wolfgang T1 - Quantitative biocide profile measurements by calibrated NAP-XPS N2 - Progress update for the EMPIR-project MetVBadBugs- Quantitative measurement and imaging of drug-uptake by bacteria with antimicrobial resistance. T2 - MetVBadBugs 26 M project meeting CY - South Mimms, UK DA - 05.07.2018 KW - Biofilms KW - Alginate KW - Antibiotics KW - E. coli KW - XPS PY - 2018 AN - OPUS4-45402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin T1 - Surface characterisation of biological samples by near-ambient pressure XPS N2 - A presentation held for the seminar "Ausgewählte analytische Methoden der Physik" hosted by Prof. Birgit Kanngießer at TU Berlin. The first part focus on depth-dependent XPS-measurements (XPS, synchrotron HAXPES) to obtain a concentration profile of iodine in an artificial biofilm. In the second part, NAP-XPS measurements of various bacterial samples are presented. T2 - Forschungsseminar "Ausgewählte analytische Methoden der Physik", TU Berlin CY - Berlin, Germany DA - 17.07.2018 KW - Biofilms KW - Alginate KW - Agarose KW - HAXPES KW - NAP-XPS PY - 2018 AN - OPUS4-45505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Unger, Wolfgang A1 - Thissen, A. A1 - Dietrich, P. T1 - Progress on characterisation of biofilms by NAP-XPS N2 - Progress talk on characterisation of biofilms by NAP-XPS in the framework of the MetVBadBugs EURAMET-project T2 - MetVBadBugs 24 M project meeting CY - Turin, Italy DA - 06.02.2018 KW - Biofilms KW - E. coli KW - Alginate KW - NAP-XPS PY - 2018 AN - OPUS4-44065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin A1 - Brown, J. A1 - Hardie, K. A1 - Unger, Wolfgang T1 - Model systems and sample preparation for surface characterisation of bacteria and biofilms by near-ambient pressure XPS N2 - Bacterial samples are typically freeze dried or cryo-prepared prior to XPS analysis to allow for measurements in ultra-high vacuum (UHV). The sample environment in the near-ambient pressure (NAP) XPS instrument EnviroESCA allows for measurements in up to 15 mbar water vapor, thus, sample preparation is no longer restricted to UHV-compatible techniques. For instance, biofilms grown in medium can be transferred directly from the medium to the measurements chamber, maintaining a humid environment throughout the measurements. Considering the complexity of bacterial samples, sample preparation must be carefully considered in order to obtain meaningful and reproducible results. In this talk, various strategies for sample preparation of bacteria and biofilms for NAP-XPS measurements will be discussed. Model systems of planktonic bacteria, artificial biofilms resembling the exopolysaccharide matrix and biofilms have been characterised in various conditions. The stability and homogeneity of the samples was assessed by monitoring the C1s core level peak at different sample locations. The quality of the XPS-spectra is also influenced by the gas environment, which will be exemplified by core level spectra of P. Fluorescens acquired in air, water vapor and ultra-high vacuum. T2 - 18th European conference on applications of surface and interface analysis (ECASIA) CY - Dresden, Germany DA - 15.09.2019 KW - NAP-XPS KW - Biofilms KW - Bacteria KW - E. coli KW - XPS PY - 2019 AN - OPUS4-49189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin A1 - Unger, Wolfgang T1 - Investigations of biofilms in various conditions by near-ambient pressure XPS N2 - X-ray photoelectron spectroscopy (XPS) provides elemental and chemical information from the outermost ~10 nm of the sample surface. This is in the same order of magnitude as the thickness of the outer bacterial membrane of gram-negative bacteria, as well as outer membrane molecules as exopolysaccharides and lipopolysaccharides, commonly attached to the cell surface. With the development of near-ambient pressure (NAP)-XPS, bacteria can be analysed with minimal sample preparation. EnviroESCA is a laboratory based NAP-XPS instrument, equipped with a monochromated Al Kα radiation source and a differentially pumped energy analyser connected to an exchangeable sample environment. It allows for measurements in various gas-atmospheres, including water vapor, which makes it possible to characterise bacteria and other biological samples close to their natural, hydrated state. Artificial model-biofilms of exopolysaccharides, planktonic Pseudomonas Fluorescens and biofilms of Escherichia Coli have been characterised in hydrated and dried state. High-resolution XPS-spectra from carbon, oxygen, nitrogen and phosphorous can be assigned to carbohydrates, lipids and proteins in general agreement with literature. Especially the carbon 1s peak is of interest. A series of measurements of an E. coli biofilm from 11 mbar in humid environment to 1 mbar air reveal changes in the C1s peak, which suggests that the bacterial surface undergo substantial Change. T2 - BAM PhD-retreat CY - Warnemünde, Germany DA - 28.09.2018 KW - Biofilms KW - E. coli KW - NAP-XPS PY - 2018 AN - OPUS4-46132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittner, Maria A1 - Altmann, Korinna A1 - Kalbe, Ute A1 - Hamann, S. A1 - Weyer, R. T1 - Bewertung der Freisetzung von Mikroplastik aus Sportböden auf Kunststoffbasis N2 - Projektvorstellung "Bewertung der Freisetzung von Mikroplastik aus Sportböden auf Kunststoffbasis": Motivation, Konzept, Umsetzung, erste analytische Ergebnisse der TED-GC/MS T2 - 24. Projekttage der Zukunft Bau Forschungsförderung CY - Bonn, Germany DA - 13.06.2023 KW - Mikroplastik KW - TED-GC/MS KW - Kunststoffrasen KW - Lysimeter KW - Beschleunigte Alterung PY - 2023 AN - OPUS4-58441 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittner, Maria A1 - Altmann, Korinna A1 - Kalbe, Ute A1 - Hamann, S. A1 - Weyer, R. T1 - Bewertung der Freisetzung von Mikroplastik aus Sportböden auf Kunststoffbasis N2 - Projektvorstellung "Bewertung der Freisetzung von Mikroplastik aus Sportböden auf Kunststoffbasis": Konzept, Umsetzung, erste Mikroplastik-Ergebnisse. T2 - Projektbegleitkreissitzung des Projektes "„Ermittlung und Minderung von Mikroplastik- und Schadstoffemissionen von Kunststoffrasen-Sportplätzen (MiMiK)“ CY - Sittensen, Germany DA - 25.09.2023 KW - Mikroplastik KW - TED-GC/MS KW - Kunststoffrasen KW - Lysimeter KW - Beschleunigte Alterung PY - 2023 AN - OPUS4-58442 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kirsch, Klemens A1 - Matschiavelli, N. A1 - Koerdt, Andrea A1 - Stumpf, T. T1 - Microbiologically Influenced Corrosion of Cast Iron Containers for High-Level Nuclear Waste Disposal N2 - Ductile and corrosion resistant cast iron is investigated as a potential container material to store high-level nuclear waste (HLW) in deep geological repositories (DGR) in claystone bedrock. The dynamic corrosion process is dependent on the conditions present in the DGR which are influenced and/or controlled by geochemical parameters (e.g., redox potential, pH, presence of and ionic concentration in (pore-)water), physical parameters (e.g., pressure), and the influence of metabolically active microorganisms. Cast iron corrosion will occur at the intersection of container and its decontaminable coating with the bentonite backfill material which contains natural microbial populations. The conditions in a DGR are simulated in microcosm experiments to investigate the impact of microbiologically influenced corrosion (MIC); the microcosms contain: B27 bentonite, synthetic pore water, N2 or N2-CO2 atmosphere, cast iron coupons, as well as the bacterium Desulfosporosinus burensis (isolated from repository depth in Buré, France). Three coupon configurations will be used: untreated, coated with decontaminable coating, and coated with decontaminable coating which has been damaged to simulate possible damages. The microcosms will be examined for bio- and geochemical parameters, such as pH, redox potential, mineral phases, sulphate concentration, Fe(II):Fe(III), changes in microbial populations, and the corrosion process for formation of corrosion products, and potential microbial influence, after a 270-day incubation period at 25°C under anaerobic conditions. In subsequent experiments, the sorption behavior of lanthanides and actinides onto the membranes of viable cells and spores of D. burensis, as well as the surface of corroded cast iron coupons will be investigated. T2 - 8th International Workshop on Long-term Prediction of Corrosion in Nuclear Waste Systems 2022 CY - Baden, Switzerland DA - 21.06.2022 KW - Microbiologically influenced corrosion (MIC) KW - Cast iron KW - Nuclear waste disposal PY - 2022 AN - OPUS4-55154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -