TY - CONF A1 - Dietz, Georg T1 - Papieranalysen für die kunstgeschichtliche Forschung N2 - Wasserzeichen und Papierstrukturen können einen wesentlichen Beitrag bei der Analyse von Kunstobjekten auf Papier darstellen. An Fallbeispielen aus der gutachterlichen Praxis und Forschungsprojekten der Vergangenheit sollen die Möglichkeiten der Papier- und Wasserzeichenforschung bei Datierungen und Authentizitätsprüfungen demonstriert werden. T2 - PTS-Workshop in Heidenau zu Thema: Materialwissenschaftliche Untersuchungsmethoden zur Charakterisierung und Authentifizierung von Dokumenten und Kunstwerken auf Papier CY - Dreden-Heidenau, Germany DA - 07.11.2019 KW - Papier KW - Fälschungserkennung KW - ZfP PY - 2019 AN - OPUS4-50634 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerrits, Ruben A1 - Pokharel, R. A1 - Breitenbach, Romy A1 - Radnik, Jörg A1 - Wirth, R. A1 - Schuessler, J. A. A1 - Benning, L. G. A1 - von Blanckenburg, F. A1 - Gorbushina, Anna A1 - Feldmann, Ines T1 - Olivine weathering by the genetically amenable rock-inhabiting fungus Knufia petricola A95 N2 - In arid sun-exposed environments, rock-inhabiting fungi dominate microbial communities on rock surfaces. Fungi are known to enhance rock weathering, although the exact mechanisms are not completely understood. These natural processes can be simulated by reproducible experimental systems. Particularly attractive are genetically amenable rock-weathering fungi, where certain traits can be knocked-out to identify weathering-relevant functions. Here, we studied the effect of the rock-inhabiting fungus Knufia petricola A95 and its melanin-deficient mutant (ΔKppks) on the weathering of a Fe-bearing olivine. We examined the olivine dissolution kinetics and looked at the olivine-fungus interface. For the former we inoculated olivine powder with the fungus in batch and mixed flow reactors and analysed the medium solution by ICP-OES, for the latter biofilm-covered olivine sections from flow-through reactors were analysed by FIB-TEM. In general olivine dissolution was lower when olivine was incubated without fungi: the abiotic olivine dissolution rates were lowest and the surface of the abiotically reacted olivine sections showed no etching. Various chemical analyses show Fe (oxyhydr)oxide precipitation on top of the abiotically reacted olivine, indicating its role in inhibiting olivine dissolution. Both the wild type (WT) and ΔKppks solubilised and bound significant amounts of Fe released by olivine dissolution. Fe (oxyhydr)oxide precipitation was thus reduced, explaining the enhanced olivine dissolution in their presence. Particularly efficient at preventing Fe precipitation were attached WT cells: the inhibition of olivine dissolution almost completely disappeared. The attachment capacity of the WT is most likely caused by the production of WT-specific extracellular polymeric substances. Our presented experimental systems allowed the precipitation of Fe (oxyhydr)oxides and included a rock-inhabiting fungus and thus simulated weathering processes relevant to natural ecosystems. T2 - ISEB 2019 CY - Potsdam, Germany DA - 23.09.2019 KW - Olivine KW - Weathering KW - Fungus PY - 2019 AN - OPUS4-49585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghigo, Tea A1 - Rabin, Ira A1 - Buzi, P. T1 - Archaeometric analysis of inks from Coptic Manucripts N2 - Understanding the technological evolution of inks from Coptic Manuscripts. T2 - III International PAThs Conference CY - Rome, University of La Sapienza, Italy DA - 25.02.2019 KW - Archaeometry PY - 2019 AN - OPUS4-48037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghigo, Tea A1 - Rabin, Ira A1 - Buzi, Paola T1 - Archaeometric analysis of Egyptian inks from Late Antiquity N2 - Presentation of the results obtained on a corpus of Egyptian papyri from Late Antiquity T2 - Research Showcase: studying Greco-Roman Egypt CY - University of Basel, Switzerland DA - 26.09.2019 KW - Ink KW - Archaeometry KW - Manuscripts KW - Coptic PY - 2019 AN - OPUS4-49969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghigo, Tea A1 - Rabin, Ira A1 - Buzi, Paola T1 - Análisis arqueométrico de tintas N2 - Análisís arquéometrico de tintas de manuscritos Egipcios T2 - IX Jornadas de Papirología CY - Abadía de Montserrat, Spain DA - 08.07.2019 KW - Coptic KW - Archaeometry KW - Ink KW - Manuscripts PY - 2019 AN - OPUS4-49970 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghigo, Tea A1 - Rabin, Ira A1 - Buzi, Paola T1 - Archaeometric analisis of Egyptian inks from Late Antiquity N2 - Archaeometric analisis of Egyptian inks from Late Antiquity: presentation of the results obtaine on a curpus of literary and documentary manuscripts. T2 - International congress of papyrology CY - Lecce, Italy DA - 28.07.2019 KW - Coptic KW - Archaeometry KW - Ink KW - Manuscripts PY - 2019 AN - OPUS4-49971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Microbiology / biofilms in material research and testing N2 - In the modern world there is an increased understanding that design and performance monitoring of materials have to be tested in connection to chemical, physical and (micro)biological challenges. A systematic study on how biofilms interact with materials and what could be done to engineer biofilms and/or materials in order to maximize the resistance of the material (surface) or the resistance the biofilm-modified material (bulk) is in strong need. In the Department “Materials and the Environment” of the BAM new experimental platform is being developed. With the help of different type of device for high throughput and microbiologically-controlled environment simulation we establish a new approach to clarify the mechanisms of biofilm/material interactions. Despite the focus on fundamental research, the main results of this project proposal will be transferable into material technology and construction chemistry and will influence the development of standardization in this topic. As the interactions of biofilms and materials have implications for most constructions as well as climate change, the results of the research generates additional value. T2 - Initialgespräch - DFG-Forschungsgruppe "Mikrobiologie/Biofilme" CY - Karlsruhe, Germany DA - 14.11.2019 KW - Biofilm KW - Microbiology KW - Black fungi KW - Solar panel PY - 2019 AN - OPUS4-50199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life on the rocks - Black fungi from biofilms on material-atmosphere interface N2 - Interface between the atmosphere and mineral substrates is the oldest terrestrial habitat. Morphologically simple microbial biofilms were the first settlers on these inhospitable surfaces at times when the Earth was inhabited only by microorganisms and the solid substrates represented only by natural rock surfaces i.e. lithosphere. Miniature, self-sufficient microbial ecosystems continue to develop on subaerial (i.e. air-exposed) solid surfaces at all altitudes and latitudes where direct contact with the atmosphere and solar radiation occurs – on rocks, mountains, buildings, monuments, solar panels. All these sub-aerial biofilms develop under fluctuating and hostile conditions – and thus frequently harbour stress-tolerant black fungi inherently able to cope with the stresses of bright sunlight and constantly changing atmospheric conditions. Black fungi – a polyphyletic group of Ascomycetes– accumulate the dark pigment DHN melanin, diverse carotenoids and mycosporines in their cells and thus successfully colonise sunlight-flooded habitats from phyllosphere to rock surfaces. Various chemical and physical extremes and fluctuating environments belong to the challenges effectively mastered by black fungi. In our laboratory we isolate novel black fungi from man-made habitats like building materials and solar panels. Using Knufia petricola A95 as a model we conduct experiments to clarify interactions of black fungi with inorganic substrates. We use available mutants to determine the functional consequences of changes in the outer cell wall envelopes – from excreted EPS to layers of protective pigments. A genetic toolbox to manipulate this Chaetothyriales representative is in further development. Our long-term goal is to understand the fundamental mechanisms how black fungi are able (i) to adhere to dry atmosphere-exposed surfaces, (ii) to survive multiple stresses and (iii) to change the underlying substrates including rocks. T2 - International Symposium on Fungal Stress (ISFUS) CY - São José dos Campos, Brazil DA - 19.05.2019 KW - Subaerial biofilm KW - Melanins KW - Carotenoids KW - Knufia KW - Mineral weathering PY - 2019 AN - OPUS4-50200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life on the rocks and other hard surfaces N2 - The story of how black fungi survive harsh conditions on sun-exposed desert rocks and material surfaces is fascinating. In the presentation examples of how knowledge of these organisms can be of practical value (e.g., in biodeterioration studies, such as on stone markers in cemeteries) would be given. Among other stories, the example of how roof tiles amended with a titanium oxide layers as a biocide actually selected for the black fungi will be told. A hypothesis about how these organisms would likely be found on solar panels and some early BAM work in that area will be presented. This then brings the connection to a study ripe for investigation in North Carolina. The talk presents the development of a study aiming at deciphering the influence of microbial biofilm formation on the energy conversion efficiency of solar photovoltaic panels or modules at two facilities (one facility under the impact of high intensity of animal agriculture and high deposition of ammonia from atmosphere and the other with low animal agriculture and lower atmospheric ammonia deposition) in North Carolina. The main hypothesis of the study is that microbial biofilm formation on solar photovoltaic panels will lead to significant decreases in energy conversion efficiency of solar photovoltaic modules and biofilm formation will also be accelerated by high ammonia concentration in the ambient atmosphere and high nitrogen deposition. T2 - Dr. Michael D. Aitken Symposium CY - Chapel Hill, NC, USA DA - 08.11.2019 KW - Black fungi KW - Solar panel KW - Biofilm PY - 2019 AN - OPUS4-50125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Oliver T1 - Paper: history, manufacture, properties N2 - The lecture traces the origins of paper, the manufacture and the spread from China to the Middle East and Europe. Though technological progress considerably affected each step of the manufacture of paper, the essence of the invention remains unchanged until today. The process of manufacturing handmade paper can be divided into a number of steps: - choosing the raw material (e.g. cellulose from wood, cotton, rags) - beating and grinding the fibres into small pieces - producing a liquid pulp of the desired texture - treating the pulp with various additives - filling the pulp suspension into a paper mould - draining the water - pressing and drying to get the actual sheet - various post-production treatments We will see how the manufacturing process is reflected in the properties of the paper and its degradation. A special attention will be paid to the instrumental analysis for identification of the paper types. Also watermark play an important role in the studies of the manuscripts. A short overview will be offered at the ends of the lecture. T2 - Summer School Manusciences 19 CY - Frejus, France DA - 10.03.2019 KW - Material science KW - Cultural heritage PY - 2019 AN - OPUS4-48140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -