TY - CONF A1 - Kittner, Maria T1 - Bewertung der Freisetzung von Mikroplastik aus Sportböden auf Kunststoffbasis N2 - Es handelt sich hierbei um die Abschluss-Präsentation des Projektes "Bewertung der Freisetzung von Mikroplastik aus Sportböden auf Kunststoffbasis", die am 28.11.24 vor dem Drittmittelgeber Zukunft Bau Forschungsförderung im Rahmen der 28. Projekttage der Bauforschung präsentiert wurde. Der 30-minütige Vortrag gliederte sich in die Kapitel Forschungsbedarf, Konzept, Ergebnisse und Take Home-Messages des Projektes. T2 - 28. Projekttage der Zukunft Bau Forschungsförderung CY - Online meeting DA - 26.11.2024 KW - Mikroplastik KW - TED-GC/MS KW - Kunststoffrasen KW - PAK KW - Schwermetalle KW - Mikroplastik Eluat Lysimeter PY - 2024 AN - OPUS4-61815 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittner, Maria T1 - Development of a new Lysimeter System to assess Microplastic, PAH & Heavy Metal Emissions from Artificial Turf Sports Pitches N2 - Since September 2023, the European Commission introduced a new regulation to reduce emissions of microplastics (MP) into the environment, including the sale and use of intentionally added MP. Therein, the use of synthetic rubber granules in artificial turf is explicitly mentioned and banned for future use. Additionally, abrasions of grass fibres and other turf components are also considered as MP sources. Artificial turf pitches are multi component systems: e. g. grass fibres made of polyethylene (PE), synthetic infill made of ethylene propylene diene monomer rubber (EPDM), carpet backing of polypropylene (PP) glued with polyurethane (PU), winding yarn of polyethylene terephthalate or elastic layer of Styrene-butadiene rubber (SBR) bound with PU. While the ban has great impact on recreational sports, there is so far no sufficient data to estimate the MP emissions from artificial turf sports pitches into the environment and thus their relevance as a source of MP pollution. To close this gap, three artificial turf scenarios in different ageing states (unaged, artificially aged and aged in real time) were analysed in this study: the past (old turf: fossil based, synthetic infill), present (most commonly installed in Germany: fossil based, synthetic infill) and future (turf with recycled grass fibres, no synthetic infill). To simulate outdoor weathering during the service life of approx. 15 years, accelerated ageing by UV weathering and mechanical stress was carried out. The newly developed and in-house manufactured Microplastic Eluate Lysimeter (MEL) simulates contaminant transfer into the groundwater and allows the simultaneous sampling for MP and dissolved contaminants, like polycyclic aromatic hydrocarbons (PAH) or heavy metals (HM). MP mass contents were analysed using smart microfilter crucibles (mesh size: 5 µm) and Thermal Extraction Desorption Gas Chromatography/Mass Spectrometry and PAH and HM concentrations were determined using Gas Chromatography/Mass Spectrometry or Inductively Coupled Plasma Atomic Emission Spectroscopy, respectively. T2 - MICRO2024: Plastic Pollution from Micro to Nano CY - Arrecife, Spain DA - 23.09.2024 KW - Microplastics Eluate Lysimeter KW - Microplastics KW - Heavy Metals KW - PAH KW - TED-GC/MS PY - 2024 AN - OPUS4-61160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittner, Maria T1 - Contaminant Emissions from Artificial Turf Sports Pitches - Simultaneous sampling for Microplastics, PAH and Heavy Metals N2 - In September 2023, the European Commission introduced a new regulation to reduce microplastic (MP) emissions into the environment, including the sale and use of intentionally added (large) MP < 5 mm (ISO/TR 21960: 2020). This explicitly applies to the use of synthetic rubber granulate infill in artificial turf installations, which are complex multi-component systems consisting of multiple synthetic polymers (Fig. 1). In addition, abrasions of synthetic grass fibres and other turf components are also considered as MP sources. Although this has a major impact on public recreational sports, there is so far no sufficient data to estimate the MP emissions from artificial turf sports pitches into the environment and thus their relevance as a source of MP pollution. To close this gap, this study compared environmental contaminant emissions of three artificial turf scenarios at different ageing states (unaged, artificially and real-time aged): the past (old turf: fossil based, synthetic infill), present (most commonly installed in Germany: fossil based, EPDM infill) and future (turf with recycled grass fibres, no synthetic infill). Accelerated ageing by UV weathering and mechanical stress was carried out to simulate the outdoor weathering during the lifespan of approx. 15 years. MP emissions and released environmentally relevant contaminants posing a risk to the groundwater were simultaneously sampled using the newly developed Microplastic Eluate Lysimeter manufactured at BAM (Fig. 2). MP contents were analysed using smart microfilter crucibles (mesh size: 5 μm) with subsequent MP detection by TED-GC/MS. Additionally, concentrations of polycyclic aromatic hydrocarbons were determined using GC/MS and heavy metals using ICP-AES. T2 - 22nd European Symposium on Polymer Spectroscopy (ESOPS) CY - Berlin, Germany DA - 08.09.2024 KW - Microplastics Eluate Lysimeter KW - Microplastics KW - TED-GC/MS KW - Heavy Metals KW - PAH PY - 2024 AN - OPUS4-61013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - The disinfectant glutaraldehyde induces antibiotic tolerance underpinned by a Disrupted Cellular State and Heterogenous Regrowth Dynamics N2 - Glutaraldehyde is widely used as a disinfectant and preservative, but little is known about its effects on bacterial susceptibility to antibiotics and the selection of tolerant phenotypes. We found that short-term exposure to sub-inhibitory levels of glutaraldehyde makes E. coli resistant to high doses of bactericidal antibiotics from different classes. This tolerance is associated with delayed, heterogeneous regrowth dynamics and global transcriptome remodeling. We identified over 1200 differentially expressed genes, including those related to antibiotic efflux, metabolic processes, and the cell envelope. The cells entered a disrupted state likely due to the unspecific mode-of-action of glutaraldehyde. Despite this unregulated response, we identified several differentially expressed genes not previously associated with antibiotic tolerance or persistence that induce antibiotic tolerance when overexpressed alone. These findings highlight how the unspecific mode-of-action of disinfectants can make bacteria temporarily resistant to antibiotics. They have implications for settings where disinfectants and antibiotics are used in close proximity, such as hospitals and animal husbandry, and for the selection dynamics of tolerant pheno- and genotypes in fluctuating environments where microorganisms are exposed to these substances, such as sewage systems. A trade-off arises from overcoming the disrupted state as quickly as possible and maintaining antibiotic tolerance. T2 - Molecular Mechanisms in Evolution (GRS) Gordon Research Seminar CY - Easton, Massachusetts, USA DA - 24.06.2023 KW - Glutaraldehyde KW - Biocides KW - Tolerance KW - Bacteria KW - Disinfection KW - Heterogeneity KW - Antibiotics KW - AMR PY - 2023 AN - OPUS4-58032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - The interplay between biocides, phenotypic heterogeneity and resistance evolution N2 - An overview of the interplay between biocides, phenotypic heterogeneity and resistance evolution presented at the University Wroclaw. T2 - Invited seminar at the Department of Molecular Microbiology CY - Wroclaw, Poland DA - 08.04.2024 KW - Disinfectants KW - Biocide resistance KW - Phenotypic heterogeneity KW - Evolution PY - 2024 AN - OPUS4-61173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - Biocides and phenotypic heterogeneity N2 - An overview of our findings regarding the interplay between phenotypic heterogeneity in bacteria and biocides. T2 - One Health and Antimicrobial Resistance CY - Berlin, Germany DA - 29.01.2024 KW - Biocides KW - Phenotypic heterogeneity KW - Biocide resistance PY - 2024 AN - OPUS4-61174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - EVOCIDE: Preserving disinfectant efficacy by predicting evolution: exposing the principles of disinfectant survival and adaptation in bacteria N2 - Presentation of the EVOCIDE research proposal work programme.EVOCIDE seeks to gain a systems level understanding of disinfectant survival and evolution in bacteria. T2 - Joint Group Seminar Rolff-McMahon-Armitage-Steiner CY - Berlin, Germany DA - 20.12.2023 KW - Disinfectants KW - Evolution KW - Microbiology KW - Bacteria KW - Biocides PY - 2023 AN - OPUS4-59224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Song, Jessica T1 - Close encounters on a micro scale: Dynamics and interactions of microplastic biofilms in aquatic ecosystems. N2 - Microplastics circulate freely throughout aquatic ecosystems and, due to their interactive nature, accumulate complex polymeric matrices consisting of rich organic compounds and inorganic pollutants. Simultaneously, these hardy substrates offer nutrition and protection to diverse microbial communities and their theatre of activity, representing a new ecological niche. In our work, we investigate the interactions of microplastics in aquatic systems and characterise the effects of these interactions on associated microbial communities to better understand how these substrates might impact surrounding ecosystems. Demonstrating no specificity to polymer type, microplastic biofilms are shaped more by the strong influence of spatial and temporal factors. Microplastic sorption of polycyclic aromatic hydrocarbons (PAHs), in contrast, appear to be more strongly dictated by substrate type, with different polymers observed to sorb varying levels of different PAHs. These interactions between the different emerging contaminants were found in our study to have a significant effect on associated substrate biofilms. Elevated levels of specific 3- and 4-ring PAHs on polyethylene and polystyrene were found to coincide with a notable shift in community composition and structure, as well as a reduced diversity among biofilm communities. The findings in our study illustrate the importance of investigating the collective effect of pollutants in combination and their complex interactions in assessing their environmental impact. To fully understand how microplastics interact and alter surrounding ecosystems, the entire substrate must be considered, including all chemicals integrated into the polymeric matrix. T2 - Biofilms 11 Conference CY - Cardiff, Wales, UK DA - 13.05.2025 KW - Microplastics KW - Biofilms KW - PAHs PY - 2025 AN - OPUS4-63389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Investigating the Thermal Decomposition of PFAS in a Full-Scale Commercial Hazardous Waste Incinerator N2 - Incineration is currently the only commercial full-scale technology available to destroy per- and polyfluoroalkyl substances (PFAS) in large solid and liquid waste streams. Given previous experience of dioxin formation during halogenated waste incineration, concerns about the emission of products of incomplete destruction (PIDs) from PFAS incineration exist. The overarching objective of this project is to track the fate of fluorine during full-scale hazardous waste incineration in order to demonstrate the readiness, viability, and level of safety for thermal PFAS destruction in various waste streams. The specific objectives of this project are (1) to enhance our understanding of key variables and conditions on PFAS incineration performance, (2) to identify major PIDs under insufficient treatment conditions, (3) to explore the catalytic role of fly ash and other process-relevant surfaces in thermal PFAS decomposition, and (4) to determine the potential formation of polyfluorinated dibenzodioxins and dibenzofurans. T2 - CEN/TC 264/WG48 Symposium - Emissions and ambient air - Determination of PFAS CY - Düsseldorf, Germany DA - 16.07.2025 KW - Per- and polyfluoroalkyl substances (PFAS) KW - Incineration PY - 2025 AN - OPUS4-63714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Panorama of Black writing inks: From Antiquity to the Middle Ages N2 - Black writing inks in the period under consideration can be divided into three different classes: soot, tannin and iron-gall ink. The first one is a fine dispersion of carbon pigments in a water-soluble binding agent, the second one is a solution of plant extract from tree barks or gallnuts, while the third one contains both soluble and insoluble phases. This last ink is based on metal (iron) and is produced by a chemical reaction of soluble iron (II) with tannin in aqueous solution. Tracing the transition from writing inks based on carbon pigments (soot or charcoal), common in Antiquity to the iron-gall inks commonly used in the Middle Ages builds a focus of our investigative work at the BAM (Federal Institute of Material Analysis and Testing) [1-5]. With the aim of creating a detailed history of writing black inks, we worked out a non-invasive protocol to collect statistically relevant ink data from dated and localized manuscripts covering a large time span and different geographic areas. The first step of our protocol consists of the screening carried out by means of imaging in the near infrared region. The optical differences between carbon, tannin, and iron-gall inks are best recognized by comparing their response to the infrared light: carbon ink has a deep black colour, iron-gall ink becomes transparent above 1400 nm, and tannin ink disappears at about 750 nm, we have simplified the analysis using a small USB microscope with built-in NIR (940 nm) and UV (395 nm) LED in addition to an external white light source [1]. Comparing the images under white and near infrared illumination, we determine the ink typology by observing the changes in the opacity of the ink. Here, carbon-based inks show no change in their opacity when illuminated with near infrared light, while the opacity of iron-gall inks changes considerably, and tannin inks become transparent. Our own recent finding that mixed carbon / iron-gall inks were quite popular in the late Antiquity and early Middle Ages suggested to return to the conventional method using infrared light in the spectral region 1000 – 1400 nm. The presentation will show the panorama of historic inks and our attempt to follow up the transition of the inks from those based on soot to the iron-gall inks commonly used in the Middle Ages. T2 - Public lecture CY - Manchester, UK DA - 01.02.2024 KW - Ink KW - Historic ink PY - 2024 AN - OPUS4-61201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -