TY - CONF A1 - Keshmiri, Hamid T1 - Bidiffractive leaky-mode biosensor N2 - This study details a thorough analysis of leaky and waveguide modes in biperiodic diffractive nanostructures. By tuning diffraction orders and subsequently confining local density of optical states at two distinct resonance wavelengths, we present a highly sensitive refractive index biosensing platform that can resolve 35.5 to 41.3 nm/RIU of spectral shift for two separate biological analytes. T2 - EMBL Symposium: Seeing is Believing - Imaging the Molecular Processes of Life CY - Heidelberg, Germany DA - 04.10.2023 KW - Optics PY - 2023 AN - OPUS4-59247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Ronen, A. A1 - Leube, Peter A1 - Ben Efrain, R. A1 - Nir, O. A1 - Chaudhary, M. A1 - Futterlieb, M. A1 - Panglisch, S. T1 - Detection, quantification, and treatment of per- and polyfluoroalkyl substances (PFAS) in groundwater (DFEAT-PFAS) N2 - Over the past century, a range of synthetic compounds have been produced to improve humanity’s quality of life. These include pharmaceuticals, plastics, and other chemical compounds that possess properties making them potentially harmful when released to the environment (e.g., ecological and health impacts to humans and animals). Per- and polyfluoroalkyl substances (PFAS) are a large group of chemicals used in the formulations of thousands of consumer goods, including aqueous film-forming foams used to suppress aviation fires in training scenarios, non-stick cookware, fast-food wrappers, water-repellent fabrics, medical equipment, and plastic and leather products. Because of the recent regulations and restrictions on the use of long chain (≥C8) PFAS a significant shift in the industry towards short (C4-C7) and ultrashort (C1-C3) chain alternatives has been recognized the last years. Due to the high polarity and water solubility of ultrashort PFAS, the potential for bioaccumulation is low. However, the high persistence of ultrashort-chain PFAS will result in environmental accumulation, especially in aquatic environments, leading to potential risks for aquatic organisms and increased human external exposure through drinking water. Ultrashort PFAS like trifluoroacetic acid (TFA) are low to moderately toxic to a range of organisms. In addition, ultrashort PFAS can penetrate natural and anthropogenic barriers and eventually reach drinking water sources. Because common drinking water treatment techniques do not sufficiently remove them, they may reach human consumption. In the project we are focusing on detecting and removing PFAS, especially ultrashort-chain PFAS from contaminated groundwater. We are designing passive sampling devices, which can collect and monitor the temporal profile of PFAS species in groundwater. This will allow us to analyze PFAS contaminations in German and Israeli groundwater using state-of-the-art and novel analytical techniques and understand the extent of contamination. In addition to quantification, PFAS contaminated groundwater will be treated via a two-stage process to produce PFAS-free drinking water. As ultrashort-chain PFAS are difficult to analyze with the current target (LC-MS/MS) and sum parameter (AOF, EOF) analysis methods, we additionally using gas chromatography – mass spectrometry (GC-MS). Therefore, an analytical method based on GC-MS is in development to analyze the volatile ultrashort-chain PFAS (TFA, PFPrA, TFMS, PFEtS, PFPrS, trifluoroethanol, pentafluoropropanol and hexafluoro isopropanol) directly in contaminated groundwater samples with the headspace technique and in eluates of organic solvents from the developed passive sampler after direct injection. Moreover, a two-stages process is designed to increase the low concentrations found in groundwater using novel membranes processes such as closed-circuit reverse osmosis (CCRO) and mixed matrix composite nanofiltration membranes (MMCM). Next, the rejected streams containing higher concentrations of PFAS will be treated by coagulation, and the remaining PFAS adsorbed onto carbonaceous nanomaterials (CNMs). The DEFEAT-PFAS project will result in the development of novel tools to detect, quantify, and remove PFAS, especially ultrashort-chain PFAS from contaminated groundwater, and will acquire a new understanding of the extent of these contaminations. T2 - Dioxin Konferenz CY - Maastricht, Netherlands DA - 10.09.2023 KW - Ground water KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Remediation PY - 2023 AN - OPUS4-58346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Doolette, A. A1 - Huang, J. T1 - Combining DGT and 31P NMR spectroscopy to determine phosphorus species in soil N2 - The amount of plant-available phosphorus (P) in soil strongly influences the yield of plants in agriculture. Therefore, various simple chemical extraction methods have been developed to estimate the plant-available P pools in soil. More recently, several experiments with the DGT technique have shown that it has a much better correlation to plant-available P in soils than standard chemical extraction methods (e.g. calcium-acetate-lactate (CAL), Colwell, Olsen, water) when soils with different characteristics are considered. However, the DGT technique cannot give information on the plant-available P species in the soil. Therefore, we combined DGT with solution 31P nuclear magnetic resonance (NMR) spectroscopy. This was achieved by using a modified DGT device in which the diffusive layer had a larger pore size, the binding layer incorporated an adsorption material with a higher capacity, and the device had a larger exposure area. The spectroscopic investigation was undertaken after elution of the deployed DGT binding layer in a NaOH solution. Adsorption tests using solutions of known organic P compounds showed that a sufficient amount of these compounds could be adsorbed on the binding layer in order for them to be analyzed by solution 31P NMR spectroscopy. Furthermore, various intermediates of the hydrolysis of trimetaphosphate in soil could be also analyzed over time. T2 - DGT Konferenz CY - Paris, France DA - 11.10.2023 KW - Soil KW - Phosphorus KW - Plant-availability PY - 2023 AN - OPUS4-58574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roesch, Philipp A1 - Witter, Philipp A1 - Vogel, Christian A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - How to investigate potential emission sources of PFAS in consumer product materials? Comparative extraction approaches and sum parameter analysis by combustion ion chromatography (CIC) N2 - Besides classical per- and polyfluorinated alkylated substances (PFAS), side-chain fluorinated polymers (SFPs) are widely applied as efficient anti-wetting and anti-greasing coatings in various daily applicated consumer products such as outdoor apparel, carpetry or paper-based food contact materials. Although the fluorinated sidechains are chemically bound to a base polymer, their release can be triggered by environmental influences or wear-off, thus contribute as significant sources of PFAS in the environment. Since only little knowledge of PFAS and SFP composition in consumer products is available, a comprehensive analytical approach might be beneficial. T2 - SETAC Konferenz 2023 CY - Dublin, Ireland DA - 30.04.2023 KW - PFAS KW - Combustion Ion Chromatography KW - Comsumer good samples PY - 2023 AN - OPUS4-57422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Anne-Christine A1 - Schreiber, Frank T1 - Co-selection for biocide and antibiotic resistance in microbial wastewater communities N2 - Biocides are used for a wide range of purposes, including disinfectants or preservatives. They play a major role in the prevention of microbial infections in healthcare and animal husbandry. The use of biocides often leads to the discharge of active biocidal substances into wastewater streams, causing the exposure of wastewater microbial communities to subinhibitory concentrations. In turn, it is known that wastewater treatment plants (WWTP) are hotspots for antibiotic resistant bacteria. Since similar mechanisms confer resistance to biocides and antibiotics, exposure to biocides can result in co-selection of antibiotic resistant bacteria in WWTP Here, we want to investigate co-selection processes of antibiotic resistance in natural WWTP microbial communities upon biocide exposure. Microbial communities were sampled at the WWTP Ruhleben in Berlin and characterized regarding their susceptibility against different clinically relevant antibiotics. To investigate the link between biocide exposure and antibiotic resistance, changes in the susceptibility level after exposure to environmentally relevant concentrations of the commonly used biocide didecyldimethylammonium chloride (DDAC) will be determined by enumerating resistant and non-resistant E. coli on selective plates with and without antibiotics and DDAC. In case of antibiotics, clinical breakpoint concentrations according to EUCAST will be used to discriminate between susceptible and resistant strains. In case of DDAC (and biocides in general), clinical breakpoints do not exist. Therefore, we determined a cut-off concentration at which the majority of naturally-occurring E. coli strains cannot grow anymore based on (I) the MIC (minimal inhibitory concentration) distribution, and (II) by plating wastewater communities onto selective indicator agar plates loaded with increasing DDAC concentration. Additionally, antibiotic cross-resistance will be determined by spotting single colonies, isolated from DDAC-selective plates onto antibiotic plates. The results of our experiments will help to determine selective concentrations and to estimate the risk of antibiotic co-selection and cross-resistance in microbial WWTP communities upon biocide exposure. T2 - Annual Conference 2023 of the Association for General and Applied Microbiology CY - Göttingen, Germany DA - 10.09.2023 KW - Antibiotic resisitance KW - Biocide KW - Wastewater KW - Risk assesment PY - 2023 AN - OPUS4-58510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobisch, Lydia-Yasmin A1 - Nordholt, Niclas A1 - Lewerenz, Dominique A1 - Schreiber, Frank T1 - Time-kill kinetics reveal heterogeneous tolerance to disinfectants N2 - Background. Disinfection is an important mitigation strategy to control and prevent the spread of infections. Incomplete or incorrect usage of disinfection may promote evolution of resistance against disinfectants and antibiotics. Ideally, disinfection reduces the number of surviving bacteria and the chance for resistance evolution. Resistance describes the ability to grow in previously inhibitory concentrations of an antimicrobial, whereas tolerance is associated with enhanced survival of lethal doses. Individual bacteria from the same population can display considerable heterogeneity in their ability to survive treatment (i.e. tolerance) with antimicrobials, which can result in unexpected treatment failure. Objective. In this study, we investigated six active substances of disinfectants, preservatives, and antiseptics against a population of E. coli to identify the presence of a tolerant subpopulation. Methods. We performed time-kill experiments and analyzed the data with a mathematical model to statistically infer whether the data is best explained by the presence of a tolerant subpopulation. Results. The analysis identified bimodal kill kinetics for benzalkonium chloride, didecyldimethylammonium chloride, and isopropanol. In contrast, kill kinetics by chlorhexidine, glutaraldehyde, and hydrogen peroxide were best explained by unimodal kill kinetics. These findings have implications for the risk of disinfection failure. In addition, we are currently performing adaptive laboratory evolution (ALE) experiments with the different disinfectants to investigate the potential consequences of tolerant sub-populations for the evolution of antimicrobial resistance and tolerance. T2 - Vereinigung Allgemeiner und Angewandter Mikrobiobiologie Jahreskongress 2023 CY - Göttingen, Germany DA - 10.09.2023 KW - Biocide KW - Desinfectant KW - E.coli PY - 2023 AN - OPUS4-58470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobisch, Lydia-Yasmin A1 - Nordholt, Niclas A1 - Lewerenz, Dominique A1 - Schreiber, Frank T1 - Time-kill kinetics reveal heterogeneous tolerance to disinfectants N2 - Background. Disinfection is an important mitigation strategy to control and prevent the spread of infections. Incomplete or incorrect usage of disinfection may promote evolution of resistance against disinfectants and antibiotics. Ideally, disinfection reduces the number of surviving bacteria and the chance for resistance evolution. Resistance describes the ability to grow in previously inhibitory concentrations of an antimicrobial, whereas tolerance is associated with enhanced survival of lethal doses. Individual bacteria from the same population can display considerable heterogeneity in their ability to survive treatment (i.e. tolerance) with antimicrobials, which can result in unexpected treatment failure. Objective. In this study, we investigated six active substances of disinfectants, preservatives, and antiseptics against a population of E. coli to identify the presence of a tolerant subpopulation. Methods. We performed time-kill experiments and analyzed the data with a mathematical model to statistically infer whether the data is best explained by the presence of a tolerant subpopulation. Results. The analysis identified bimodal kill kinetics for benzalkonium chloride, didecyldimethylammonium chloride, and isopropanol. In contrast, kill kinetics by chlorhexidine, glutaraldehyde, and hydrogen peroxide were best explained by unimodal kill kinetics. These findings have implications for the risk of disinfection failure. In addition, we are currently performing adaptive laboratory evolution (ALE) experiments with the different disinfectants to investigate the potential consequences of tolerant sub-populations for the evolution of antimicrobial resistance and tolerance. T2 - FEMS Conference CY - Hamburg, Germany DA - 10.07.2023 KW - Biocide KW - Desinfectant KW - E.coli PY - 2023 AN - OPUS4-58471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Schmidt, Selina A1 - Lewerenz, Dominique T1 - Phenotypic and evolutionary responses of bacteria to disinfection N2 - Disinfectants are important to prevent the transmission of pathogens, especially in the face of the current antibiotic resistance crisis. The crisis is further exacerbated by phenotypically tolerant persister subpopulations that can survive transient antibiotic treatment and facilitate resistance evolution. Despite the transient nature of disinfectant application, persistence to disinfectants and its role for the evolution of tolerance and cross-resistance to antibiotics has not been studied. Our work shows that E. coli displays persistence against several widely used disinfectants, including benzalkonium chloride (BAC), didecyldimethylammoniumchlorid (DDAC) and isopropanol. The molecular mechanism of BAC persistence is triggered in stationary phase and affected by several antibiotic persister genes (hipA, tisB, tolC, relA, spoT). Experimental evolution and population dynamic modeling show that repeated failure of disinfection due to persisters rapidly selects for BAC tolerance underpinned by reduced cell surface charge due to mutations in genes related to lipid A acylation (lpxML). Furthermore, evolved BAC tolerance affects the susceptibility to antibiotics, leading to positive selection of disinfectant tolerant strains at environmentally relevant antibiotic concentrations and variations in evolvability of antibiotic resistance due to epistatic effects. These results highlight the need for faithful application of disinfectants to steward their efficacy and the efficacy of antibiotics. A better understanding of the bacterial response to disinfectants is crucial to understand and avert the ongoing antimicrobial resistance crisis. T2 - Gordon Research Conference - Molecular mechanisms of evolution CY - Easton, MA, United States DA - 25.06.2023 KW - Antimicrobial resistance KW - Bacteria KW - Disinfection KW - Biocides PY - 2023 AN - OPUS4-57861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Gustiherdini, Cahyaruri A1 - Lewerenz, Dominique A1 - Kanaris, Orestis A1 - Schreiber, Frank T1 - The disinfectant glutaraldehyde induces antibiotic tolerance N2 - Glutaraldehyde is widely used as a disinfectant and preservative, but little is known about its effects on bacterial susceptibility to antibiotics and the selection of tolerant phenotypes. We found that short-term exposure to sub-inhibitory levels of glutaraldehyde makes E. coli resistant to high doses of bactericidal antibiotics from different classes. This tolerance is associated with delayed, heterogeneous regrowth dynamics and global transcriptome remodeling. We identified over 1200 differentially expressed genes, including those related to antibiotic efflux, metabolic processes, and the cell envelope. The cells entered a disrupted state likely due to the unspecific mode-of-action of glutaraldehyde. Despite this unregulated response, we identified several differentially expressed genes not previously associated with antibiotic tolerance or persistence that induce antibiotic tolerance when overexpressed alone. These findings highlight how the unspecific mode-of-action of disinfectants can make bacteria temporarily resistant to antibiotics. They have implications for settings where disinfectants and antibiotics are used in close proximity, such as hospitals and animal husbandry, and for the selection dynamics of tolerant pheno- and genotypes in fluctuating environments where microorganisms are exposed to these substances, such as sewage systems. A trade-off arises from overcoming the disrupted state as quickly as possible and maintaining antibiotic tolerance. T2 - Gordon Research Conference - Molecular Mechanisms in Evolution CY - Easton, Massachusetts, United States DA - 25.06.2023 KW - Glutaraldehyde KW - Biocides KW - Tolerance KW - Bacteria KW - Disinfection KW - Heterogeneity KW - Antibiotics PY - 2023 AN - OPUS4-58033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Razkin Bartolomé, Malen A1 - Gräf, S. A1 - Thiele, Dorothea A1 - Sahre, Mario A1 - Zabala, A. A1 - Buruaga, L. A1 - Krüger, Jörg A1 - Müller, F.A. A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Bacterial adhesion on fs-laser processed laser-induced periodic surface structures N2 - Bacteria are ubiquitous and colonize all types of surfaces, including those in close proximity to humans, such as skin, food, and everyday objects. This raises the question of whether their presence represents a problem to be mitigated or a potential source of benefit to be harnessed, thereby stimulating scientific inquiry into the role of surface-associated bacteria in diverse domains ranging fromhuman health to industrial biotechnology. Aim: The objective of this project is to explore the impact of modifying surface topography on bacterial adhesion behavior. By manipulating the physical characteristics of the substrate, the attachment and detachment dynamics of bacteria can potentially be modified, leading to novel strategies for controlling bacterial colonization in various applications, such as medical devices. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were tested on LIPSS-covered Fused Silica samples. T2 - 2023 Spring Meeting · , 2023 · Strasbourg CY - Strasbourg, France DA - 29.05.2023 KW - LIPSS KW - Biofilm KW - fs-laser processing PY - 2023 AN - OPUS4-58456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -