TY - CONF A1 - Schumacher, Julia T1 - Genetic manipulation of the microcolonial black fungus Knufia petricola N2 - Microcolonial black fungi, a polyphyletic group of ascomycetes, exhibit constitutive melanin formation, yeast-like growth and high stress tolerances. They dominate – often together with bacteria and algae in sub-aerial biofilms – a range of hostile environments including natural and man-made ones, from salterns to dishwashers, roofs and solar panels. Because of lacking genetic tools and the slow growth of most isolates, the genetic bases for these specific properties are largely unknown. The rock-inhabiting fungus Knufia petricola (Eurotiomycetes, Chaetothyriales) exhibits all characteristics of microcolonial black fungi and was selected as recipient for genetic engineering to study gene functions and genetic interactions. Different variants of green and red fluorescent proteins were successfully expressed indicating that fluorescence microscopy using genetically encoded fluorescent proteins and fluorescent dyes enables various cell biology approaches. Furthermore, genes of biosynthetic pathways (DHN melanin, carotenoids, uracil, adenine) were successfully mutated by applying traditional gene replacement and plasmid-based or ribonucleoprotein (RNP)-based CRISPR/Cas9 or silenced by RNA interference (RNAi). The availability of this advanced and efficient genetic toolbox and the annotated genome sequence of strain A95 makes K. petricola an excellent model for exploring the secrets of microcolonial black fungi. T2 - Departmental colloquium of the Tuscia University CY - Viterbo, Italy DA - 14.02.2020 KW - black fungus KW - genetics KW - Crispr/Cas9 PY - 2020 AN - OPUS4-50592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Photoregulation of Metabolism in Plant- & Rock-associated Black Fungi N2 - Fungi that share light-flooded habitats with phototrophs may profit from excess photosynthetic products. But to cope with sunlight-associated stresses it is important for fungi to accurately sense and respond to changes in light. To test the hypothesis that light is an environmental cue that Ascomycota use to coordinate growth, stress responses as well as to establish pathogenic or symbiotic relationships, the photoreceptor (PR) distribution in species from different ecological niches was analysed. The genomes of black fungi from phyllosphere and exposed solid surfaces contain multiple photoreceptors (PRs). The filamentous foliar plant pathogen Botrytis cinerea (Leotiomycetes) has a highly sophisticated photosensory and signalling system that helps to avoid light and to locate susceptible hosts. Rock-inhabiting Dothideo- and Eurotiomycetes including Knufia petricola possess equal numbers of PRs along with the same set of protective pigments. This similarity between black fungi from plant and rock surfaces suggests that photoperception and photoregulation are important for fungi that avoid loss of energy and nutrients through cooperation with phototrophs. T2 - European Fungal Secondary Metabolism Symposium CY - Hannover, Germany DA - 30.09.2019 KW - Fungi KW - Secondary metabolism KW - Light regulation KW - Pigments PY - 2019 AN - OPUS4-49638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Photoregulation in Plant- & Rock-associated Black Fungi N2 - Fungi that share light-flooded habitats with phototrophs may profit from excess photosynthetic products. But to cope with sunlight-associated stresses it is important for fungi to accurately sense and respond to changes in light. To test the hypothesis that light is an environmental cue that Ascomycota use to coordinate growth, stress responses as well as to establish pathogenic or symbiotic relationships, the photoreceptor (PR) distribution in species from different ecological niches was analysed. The genomes of black fungi from phyllosphere and exposed solid surfaces contain multiple photoreceptors (PRs). The filamentous foliar plant pathogen Botrytis cinerea (Leotiomycetes) has a highly sophisticated photosensory and signalling system that helps to avoid light and to locate susceptible hosts. Rock-inhabiting Dothideo- and Eurotiomycetes including Knufia petricola possess equal numbers of PRs along with the same set of protective pigments. This similarity between black fungi from plant and rock surfaces suggests that photoperception and photoregulation are important for fungi that avoid loss of energy and nutrients through cooperation with phototrophs. T2 - Scientific Colloquium at the Department of Genetics, University of Seville CY - Seville, Spain DA - 24.10.2019 KW - Light sensing KW - Knufia petricola KW - Botrytis cinerea PY - 2019 AN - OPUS4-49637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Rock-EATING FUNGI - Genetic Dive into the Biology of the Microcolonial Black Fungus Knufia petricola N2 - Microcolonial black fungi are a group of ascomycetes that exhibit high stress tolerance, yeast‑like growth and constitutive melanin formation. They dominate a range of hostile natural and man‑made environments, from desert rocks and salterns to dishwashers, roofs and solar panels. Due to their slow growth and a lack of genetic tools, the underlying mechanisms of black fungi’s phenotypic traits have remained largely unexplored. We chose to address this gap by genetically engineering the rock‑inhabiting fungus Knufia petricola (Eurotiomycetes, Chaetothyriales), a species that exhibits all characteristics of black fungi. The state‑of‑the‑art genetic toolkit, together with the annotated genome sequence of strain A95, firmly established K. petricola as a model for exploring microcolonial black fungi. T2 - VAAM-Jahrestagung 2021 CY - Online meeting DA - 18.03.2021 KW - Fungus KW - Genetics KW - Marble PY - 2021 AN - OPUS4-52496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Erdmann, Eileen A. A1 - Nitsche, Sarah A1 - Gerrits, Ruben A1 - Heeger, Felix A1 - Gorbushina, Anna T1 - Genetic engineering of black fungi: lessons learned from Knufia petricola N2 - The exponential rise in the number of fungal genomes sequenced by next-generation sequencing techniques makes it necessary to increase efforts to correctly annotate and assign gene functions. There are two possibilities to explore a genome and its gene functions. The hypothesis-based method proves the function of already existing gene/allele candidates by targeted mutagenesis - so called reverse genetics. The basis of forward genetics approaches is the random mutagenesis of the genome, followed by screening of obtained mutants for the phenotype of interest, and identification of the mutated genes in the respective mutants. This strategy is hypothesis-generating, means it is necessary to verify the relationship between the detected mutations and the observed phenotype by targeted mutagenesis of the identified gene. We developed a toolbox for editing the genome of the rock inhabitant Knufia petricola [Eurotiomycetes, Chaetothyriales] that allows the study of the phenotypic characteristics of black fungi such as the regulation of pigment synthesis, general stress responses, oligotrophy, and the unusual modes of cell division by advanced reverse and forward genetics approaches. The toolbox includes the annotated genome sequence of strain A95, efficient strategies for CRISPR/Cas9-based genome editing and live-cell imaging using genetically encoded fluorescent proteins, as well as protocols for -omics approaches and for simulation of mineral weathering. A forward genetics approach using transposon mutagenesis is currently developed for identifying essential genes. The established protocols and knowledge gained from K. petricola form a starting point for making other fungi from extreme environments accessible to genetic manipulation. T2 - IUBMB Focused Meeting on Extremophilic Fungi (FUN-EX) CY - Ljubljana, Slovenia DA - 19.09.2023 KW - Fungus KW - Extremotolerance KW - Genetics KW - Model organism PY - 2023 AN - OPUS4-58424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Brandhorst, Antonia A1 - Catanzaro, Ilaria A1 - Nitsche, Sarah A1 - Erdmann, Eileen A1 - Gerrits, Ruben A1 - Gorbushina, Anna T1 - Versatile DHN melanin – spotlight on its function in microcolonial black fungi N2 - Dihydroxynaphthalene (DHN) melanin is produced by diverse Ascomycetes via slightly differing biosynthetic routes. The polyketide synthases (PKS) release the heptaketide YWA1, the hexaketide AT4HN or the pentaketide T4HN. The first two products are deacetylated by ‘yellowish-green’ hydrolases to T4HN, and T4HN is further converted by a core set of enzymes to DHN. Final polymerization steps are accomplished by multicopper oxidases. DHN melanogenesis is often regulated in a spatial and temporal fashion resulting e.g., in melanized reproduction and survival structures of the foliar plant pathogen Botrytis cinerea (Schumacher 2016, Mol Microbiol). In contrast, a polyphyletic group of Ascomycetes (microcolonial fungi/ black yeasts) dwelling in hostile habitats such as bare rock surfaces in hot and cold deserts, exhibits constitutive melanogenesis. Here, DHN melanin builds a protective layer around all vegetative cells thus contributing to the survival of diverse environmental stresses even without specialized reproduction structures. For studying the relevance of constitutive DHN melanogenesis for tolerance of abiotic and biotic stresses, adhesion to substrates and subsequent damage of colonized surfaces, the rock-inhabiting fungus Knufia petricola was chosen as gene functions in this fungus can be studied by CRISPR/Cas9-based genome editing. The putative melanogenic genes were identified in the genome of K. petricola, deleted to confirm their involvement in DHN melanogenesis and co-expressed in Saccharomyces cerevisiae for reconstruction of the synthesis pathway. Phenotypes of DHN-deficient mutants are studied. Here, we will discuss the role of the DHN melanin layer on the outer cell wall in tolerating UV irradiation. T2 - Annual conference 2023 of the Association for General and Applied Microbiology CY - Göttingen, Germany DA - 10.09.2023 KW - Pigment KW - UV radiation KW - Tolerance PY - 2023 AN - OPUS4-58425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Gorbushina, Anna A. T1 - How does light affect rock-inhabiting fungi? N2 - Sunlight is an almost unavoidable environmental cue and plays a fundamental role in the biology of pro- and eukaryotic organisms. To cope with sunlight-associated stresses e.g., high temperatures, UV radiation with associated DNA damage, accumulation of reactive oxygen species (ROS), desiccation and osmotic stresses, it is important for organisms to accurately sense and respond to changes in light. The benefits of light are obvious for green organisms such as cyanobacteria, algae and plants which use light as an energy source (photosynthesis). Less apparent are other light-dependent processes such as light-driven DNA repair by photolyases (photoreactivation) or ion pumping by microbial opsins. Fungi that can share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. Rock-inhabiting Dothideomycetes and Eurotiomycetes including Knufia petricola possess many proteins for absorbing UV/blue, green, red and far-red light, produce the black 1,8 dihydroxynaphthalene (DHN) melanin and orange-red carotenoids, and may live in multispecies biofilms. Here, we are addressing the question to which extent constitutive pigment formation (melanin and carotenoids) and responses mediated by the stress-activated mitogen-activated protein (MAP) kinase contribute to the observed light (UV-B) tolerance of K. petricola. T2 - 32nd Fungal Genetics Conference CY - Pacific Grove, CA, USA DA - 12.03.2024 KW - Knufia petricola KW - Black fungi KW - Light-induced stress PY - 2024 AN - OPUS4-59732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Looking through the eyes of fungi: from photoperception to photoresponses and beyond N2 - Sunlight is an almost unavoidable environmental cue and plays a fundamental role in the biology of pro- and eukaryotic organisms. To cope with sunlight-associated stresses e.g., high temperatures, UV radiation, accumulation of reactive oxygen species, desiccation, and osmotic stress, it is important for organisms to accurately sense and respond to changes in light. The benefits of light are obvious for green organisms such as cyanobacteria, algae and plants which use light as an energy source (photosynthesis). Fungi that can share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. Examples are the plant pathogen Botrytis cinerea, the gray mold fungus, and the rock inhabitant Knufia petricola, a microcolonial black fungus which forms multispecies biofilms with bacteria and algae. T2 - 20th Symposium of the Research Training Group on Bioactive Peptides – The colorful tree of life CY - Berlin, Germany DA - 23.01.2024 KW - Black fungi KW - Melanin KW - Stress tolerance PY - 2024 AN - OPUS4-59543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Brandhorst, Antonia A1 - Nitsche, Sarah A1 - Erdmann, Eileen A1 - Gerrits, Ruben A1 - Gorbushina, Anna T1 - The roles of DHN melanin and the stress-activated MAP kinase in the rock inhabitant Knufia petricola N2 - Black fungi/yeasts exhibit high stress tolerance, yeast‑like or meristematic growth, and constitutive 1,8-dihydroxynaphthalene (DHN) melanin formation. Due to their slow growth, robust cell walls and the lack of sexual cycles and genetic tools, the underlying mechanisms of their phenotypic traits have remained largely unexplored. Using recently developed genetic tools, it is now possible to manipulate the genome of the rock-inhabiting model fungus Knufia petricola. Thus, gene functions and the cell biology of black fungi can be studied using CRISPR/Cas9-based genome editing and live-cell imaging with genetically encoded fluorescent proteins. Here, we are addressing the question to which extent constitutive pigment formation (melanin and carotenoids) and responses mediated by the stress-activated mitogen-activated protein (MAP) kinase contribute to the observed extremotolerance of K. petricola. The mutations of pks1, phs1 and both genes result in melanin-free (pink), carotenoid-free (black) and pigment-free (white) strains, respectively. The other putative melanogenic genes were identified in the genome, deleted to confirm their involvement in DHN melanogenesis and co-expressed in Saccharomyces cerevisiae for reconstruction of the synthesis pathway. Sak1 encoding the stress-activated MAP kinase was deleted in the wild-type and different pigment-deficient backgrounds. Growth of the obtained single, double and triple deletion mutants was tested by droplet tests on media supplemented with different stress-inducing agents. The Δsak1 mutants show slightly reduced growth rates even without environmental pressure and are hypersensitive to different stresses: e.g. osmotic, oxidative, membrane, pH and heat stress. Melanin-free Δsak1 mutants are more sensitive than black Δsak1 mutants to some but not all stress conditions, suggesting that melanin and the SAK1 pathway have complementary roles in protecting K. petricola from stress. T2 - 16th European Conference on Fungal Genetics CY - Innsbruck, Austria DA - 05.03.2023 KW - Black fungus KW - Extremotolerance KW - Pigments PY - 2023 AN - OPUS4-57147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocide resistance risk assessment N2 - This presentation details the current status of biocide resistance risk assessment. T2 - Risk assessment of biocide and antibiotic resistance CY - Online meeting DA - 09.03.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides KW - Risk assessment PY - 2022 UR - https://www.gu.se/en/biocide/risk-assessment-of-biocide-and-antibiotic-resistance AN - OPUS4-56235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -