TY - JOUR A1 - Xing, N. A1 - Höfler, T. A1 - Hearn, C. J. A1 - Nascimento, M. A1 - Camps Paradell, G. A1 - McMahon, Dino Peter A1 - Kunec, D. A1 - Osterrieder, N. A1 - Cheng, H. H. A1 - Trimpert, J. ED - Trimpert, Jakob T1 - Fast-forwarding evolution—Accelerated adaptation in a proofreading-deficient hypermutator herpesvirus JF - Virus Evolution N2 - Evolution relies on the availability of genetic diversity for fitness-based selection. However, most deoxyribonucleic acid (DNA) viruses employ DNA polymerases (Pol) capable of exonucleolytic proofreading to limit mutation rates during DNA replication. The relative genetic stability produced by high-fidelity genome replication can make studying DNA virus adaptation and evolution an intensive endeavor, especially in slowly replicating viruses. Here, we present a proofreading-impaired Pol mutant (Y547S) of Marek’s disease virus that exhibits a hypermutator phenotype while maintaining unimpaired growth in vitro and wild-type (WT)-like pathogenicity in vivo. At the same time, mutation frequencies observed in Y547S virus populations are 2–5-fold higher compared to the parental WT virus. We find that Y547S adapts faster to growth in originally non-permissive cells, evades pressure conferred by antiviral inhibitors more efficiently, and is more easily attenuated by serial passage in cultured cells compared to WT. Our results suggest that hypermutator viruses can serve as a tool to accelerate evolutionary processes and help identify key genetic changes required for adaptation to novel host cells and resistance to antiviral therapy. Similarly, the rapid attenuation achieved through adaptation of hypermutators to growth in cell culture enables identification of genetic changes underlying attenuation and virulence, knowledge that could practically exploited, e.g. in the rational design of vaccines. KW - Polymerase mutant KW - Proofreading deficient KW - Hypermutation KW - Adaption KW - DNA polymerase KW - Marek's Disease Virus PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565631 DO - https://doi.org/10.1093/ve/veac099 SN - 2057-1577 VL - 8 IS - 2 SP - 1 EP - 11 PB - Oxford University Press CY - Oxford, UK AN - OPUS4-56563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Laar, C. A1 - Baar, C. A1 - Plarre, Rüdiger A1 - McMahon, Dino Peter T1 - Genetic relationships of local infestations by Anobium punctatum, Xestobium rufovillosum and their associated predator Korynetes caeruleus from buildings in North-Eastern Germany T2 - Proceedings IRG Annual Meeting 2021 N2 - Wood-destroying pests such as Anobium punctatum and Xestobium rufovillosum cause damage to art and cultural objects as well as to buildings. Monitoring population dynamics of pest species as well as of their naturally occurring counterparts are an essential part in the development of biological control measures as alternatives to conventional wood protection. Therefore, both the dispersal and homogeneity of pest and beneficial insect populations across multiple sites and buildings were investigated in the present study using DNA barcoding. Specifically, beetles of Anobium punctatum (de Geer 1774) (Coleoptera, Ptinidae), Xestobium rufovillosum (de Geer, 1974) (Coloeptera, Ptinidae), and Korynetes caeruleus (de Geer 1775) (Coleoptera, Cleridae) were collected from buildings at four different sites in Mecklenburg-Western Pomerania, North-Eastern Germany. DNA analysis was performed using mitochondrial cytochrome c oxidase subunit I (COI). For A. punctatum, low base pair variability was found in the gene segment studied (4-5 SNPs) within one building (Greven) and between four spatially separated sites. Conversely, in X. rufovillosum, the sequences from two sites studied were homogeneous within a site but differed between locations by nine base pair positions (SNPs). The main result of this study is that the pests A. punctatum and X. rufovillosum showed a higher variability in the investigated gene segment than the natural counterpart K. caeruleus. T2 - IRG52 Webinar on Wood Protection CY - Online meeting DA - 01.11.21 KW - Anobium punctatum KW - Xestobium rufovillosum KW - Korynetes caeruleus KW - DNA barcode PY - 2021 SN - 2000-8953 VL - 21 SP - 1 EP - 11 PB - The International Research Group on Wood Protection CY - Stockholm, Sweden AN - OPUS4-54197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trimpert, J. A1 - Groenke, N. A1 - Kunec, D. A1 - Eschke, K. A1 - He, Shulin A1 - McMahon, Dino Peter A1 - Osterrieder, N. T1 - A proofreading-impaired herpesvirus generates populations with quasispecies-like structure JF - Nature Microbiology N2 - RNA virus populations are composed of highly diverse individuals that form a cloud of related sequences commonly referred to as a ‘quasispecies’1–3. This diversity arises as a consequence of low-fidelity genome replication4,5. By contrast, DNA Virus populations contain more uniform individuals with similar fitness6. Genome diversity is often correlated with increased Fitness in RNA viruses, while DNA viruses are thought to require more faithful genome replication. During DNA replication, erroneously incorporated bases are removed by a 3′-5′ exonuclease, a highly conserved enzymatic function of replicative DNA but not RNA polymerases. This proofreading process enhances replication fidelity and ensures the genome integrity of DNA organisms, including large DNA viruses7. Here, we show that a herpesvirus can tolerate impaired exonucleolytic proofreading, resulting in DNA virus populations, which, as in RNA viruses8, are composed of highly diverse genotypes of variable individual fitness. This indicates that herpesvirus mutant diversity may compensate for individual Fitness loss. Notably, in vivo infection with diverse virus populations results in a marked increase in virulence compared to genetically homogenous parental virus. While we cannot exclude that the increase in virulence is caused by selection of and/or interactions between individual genotypes, our findings are consistent with quasispecies dynamics. Our results contrast with traditional views of DNA virus replication and evolution, and indicate that a substantial increase in population diversity can lead to higher virulence. KW - Marek's virus KW - Virulence KW - Quasispecies KW - Evolution PY - 2019 DO - https://doi.org/10.1038/s41564-019-0547-x SN - 2058-5276 N1 - Corrigendum: Nature Microbiology 4 (2019) 2025 VL - 4 SP - 2175 EP - 2183 PB - Nature Publishing Group CY - London AN - OPUS4-48896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tauber, J. P. A1 - McMahon, Dino Peter A1 - Ryabov, E.V. A1 - Kunat, M. A1 - Ptaszynska, A. A. A1 - Evans, J. D. T1 - Honeybee intestines retain low yeast titers, but no bacterial mutualists, at emergence JF - Yeast N2 - Honeybee symbionts, predominantly bacteria, play important roles in honeybee health, nutrition, and pathogen protection, thereby supporting colony health. On the other hand, fungi are often considered indicators of poor bee health, and honeybee microbiome studies generally exclude fungi and yeasts. We hypothesized that yeasts may be an important aspect of early honeybee biology, and if yeasts provide a mutual benefit to their hosts, then honeybees could provide a refuge during metamorphosis to ensure the presence of yeasts at emergence. We surveyed for yeast and fungi during pupal development and metamorphosis in worker bees using fungal-specific quantitative polymerase chain reaction (qPCR), next-generation sequencing, and standard microbiological culturing. On the basis of yeast presence in three distinct apiaries and multiple developmental stages, we conclude that yeasts can survive through metamorphosis and in naïve worker bees, albeit at relatively low levels. In comparison, known bacterial mutualists, like Gilliamella and Snodgrassella, were generally not found in pre-eclosed adult bees. Whether yeasts are actively retained as an important part of the bee microbiota or are passively propagating in the colony remains unknown. Our demonstration of the constancy of yeasts throughout development provides a framework to further understand the honeybee microbiota. KW - Fungi KW - Honeybee KW - Microbiota KW - Yeast PY - 2022 DO - https://doi.org/10.1002/yea.3665 SN - 1097-0061 VL - 39 IS - 1-2 SP - 95 EP - 107 PB - John Wiley & Sons Ltd. CY - London, UK AN - OPUS4-53892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tauber, J. P. A1 - Einspanier, R. A1 - Evans, J. D. A1 - McMahon, Dino Peter T1 - Co-incubation of dsRNA reduces proportion of viable spores of Ascosphaera apis , a honey bee fungal pathogen JF - Journal of Apicultural Research N2 - There are viral, fungal, bacterial and trypanosomal pathogens that negatively impact the individual and superorganismal health of the western honey bee. One fungal pathogen, Ascosphaera apis , affects larvae and causes the disease chalkbrood. A previous genome analysis of As. apis revealed that its genome encodes for RNA interference genes, similar to other fungi and eukaryotes. Here, we examined whether As. apis -targeting double-stranded RNA species could disrupt the germination of As. apis. We observed that when spores were co-incubated with As. apis -targeting dsRNA, fewer spores were activated for germination, suggesting an uptake of exogenous genetic material at the very onset of germination and consequent damage to essential transcripts needed for germination. Overall, these results indicate that the causative agent of chalkbrood disease, As. apis , can be successfully targeted using an RNAi-based strategy. KW - DsRNA KW - Honey bee KW - Pathogen KW - Ascosphaera apis KW - RNAi KW - Control PY - 2020 DO - https://doi.org/https://doi.org/10.1080/00218839.2020.1754090 VL - 59 IS - 5 SP - 791 EP - 799 AN - OPUS4-52881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieksmeyer, T. A1 - He, S. A1 - Esparza-Mora, M. A. A1 - Jiang, S. A1 - Petrasiunaite, V. A1 - Kuropka, B. A1 - Banasiak, Robert A1 - Julseth, M. J. A1 - Weise, C. A1 - Johnston, P. R. A1 - Rodriguez-Rojas, A. A1 - McMahon, Dino Peter T1 - Eating in a losing cause: Limited benefit of modifed macronutrient consumption following infection in the oriental cockroach Blatta orientalis JF - BMC ecology and evolution N2 - Background: Host–pathogen interactions can lead to dramatic changes in host feeding behaviour. One aspect of this includes self-medication, where infected individuals consume substances such as toxins or alter their macronutrient consumption to enhance immune competence. Another widely adopted animal response to infection is illness-induced anorexia, which is thought to assist host immunity directly or by limiting the nutritional resources available to pathogens. Here, we recorded macronutrient preferences of the global pest cockroach, Blatta orientalis to investigate how shifts in host macronutrient dietary preference and quantity of carbohydrate (C) and protein (P) interact with immunity following bacterial infection. Results: We fnd that B. orientalis avoids diets enriched for P under normal conditions, and that high P diets reduce cockroach survival in the long term. However, following bacterial challenge, cockroaches signifcantly reduced their overall nutrient intake, particularly of carbohydrates, and increased the relative ratio of protein (P:C) consumed. Surprisingly, these behavioural shifts had a limited efect on cockroach immunity and survival, with minor changes to immune protein abundance and antimicrobial activity between individuals placed on diferent diets, regardless of infection status. Conclusions: We show that cockroach feeding behaviour can be modulated by a pathogen, resulting in an illness-induced anorexia-like feeding response and a shift from a C-enriched to a more P:C equal diet. However, our results also indicate that such responses do not provide signifcant immune protection in B. orientalis, suggesting that the host’s dietary shift might also result from random rather than directed behaviour. The lack of an apparent beneft of the shift in feeding behaviour highlights a possible reduced importance of diet in immune regulation in these invasive animals, although further investigations employing pathogens with alternative infection strategies are warranted. KW - Animal immune system KW - A key interface KW - Host and symbiont ecology KW - Behavioural mechanisms KW - Biotic environment PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550022 DO - https://doi.org/10.1186/s12862-022-02007-8 SN - 2730-7182 VL - 22 IS - 1 SP - 1 EP - 14 PB - Springer Nature CY - London, UK AN - OPUS4-55002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oberpaul, M. A1 - Zumkeller, C. M. A1 - Culver, T. A1 - Spohn, M. A1 - Mihajlovic1, S. A1 - Leis, B. A1 - Glaeser, S. P. A1 - Plarre, Rüdiger A1 - McMahon, Dino Peter A1 - Hammann, P. A1 - Schäberle, T. F. A1 - Glaeser, J. A1 - Vilcinskas, A. T1 - High-Throughput Cultivation for the Selective Isolation of Acidobacteria From Termite Nests JF - Frontiers in Microbiology N2 - Microbial communities in the immediate environment of socialized invertebrates can help to suppress pathogens, in part by synthesizing bioactive natural products. Here we characterized the core microbiomes of three termite species (genus Coptotermes) and their nest material to gain more insight into the diversity of termite-associated bacteria. Sampling a healthy termite colony over time implicated a consolidated and highly stable microbiome, pointing toward the fact that beneficial bacterial phyla play a major role in termite fitness. In contrast, there was a significant shift in the composition of the core microbiome in one nest during a fungal infection, affecting the abundance of wellcharacterized Streptomyces species (phylum Actinobacteria) as well as less-studied bacterial phyla such as Acidobacteria. High-throughput cultivation in microplates was implemented to isolate and identify these less-studied bacterial phylogenetic group. Amplicon sequencing confirmed that our method maintained the bacterial diversity of the environmental samples, enabling the isolation of novel Acidobacteriaceae and expanding the list of cultivated species to include two strains that may define new species within the genera Terracidiphilus and Acidobacterium. KW - Termite-associated microbes KW - Termites KW - Coptotermes KW - Core microbiome KW - Natural products discovery KW - Acidobacteria KW - underexplored phyla KW - Social insects PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515283 DO - https://doi.org/10.3389/fmicb.2020.597628 VL - 11 SP - 1 EP - 16 AN - OPUS4-51528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oberpaul, M. A1 - Spohn, M. A1 - Fracowiak, J. A1 - Plarre, Rüdiger A1 - McMahon, Dino Peter A1 - Hammann, P. A1 - Vilcinskas, A. A1 - Gläser, J. T1 - Exploiting termite nest microbiomes for antibiotic discovery by using an ultra-high throughput Microfluidics/FACS driven pipeline combined with a microtiter plate based cultivation strategy N2 - Infections with multi-resistant Gram negative pathogens are a major threat to our health system. In order to serve the needs in antibiotics development we selected untapped bioresources and implemented high throughput approaches suitable for the discovery of strains producing antibiotics with anti-Gram negative activity. Our approaches rely on the hypothesis that Termite associated bacteria are likely to produce potent antibiotics to defend their hosts against entomopathogenic microorganisms. Termite nests and guts harbor suitable, highly diverse microbiomes in which bacterial taxa are present known to potentially produce natural compounds. In a first step the diversity of Coptotermes species nest microbiomes was assessed carefully by using 16S rDNA amplicon sequencing on the Illumina MiSeq platform and nest material was selected to retrieve viable cells by using Nycodenz density gradient centrifugation. In order to analyze the diversity of the culturable termite nest microbiome, bacterial cells were either distributed in 384-well plates (approach 1) or encapsulated in small spheric agarose beads by an high throughput microfluidics technique (approach 2). Cultures obtained from approach 1 were scaled-up in 96-well Duetz-systems for characterization of diversity and for rapid supernatant screening using the bioluminescence-labeled E. coli pFU166. The generated droplets of approach 2 simultaneously received a small population of GFP-tagged Gram negative screening cells and were sorted for low fluorescence using FACS. After elimination of redundancy we performed a fast scale-up of active strains. Implementation of this pipeline allows us to prioritize antibiotics producing strains in a ultra-high throughput fashion and by cultivation of broad diversity in our approches. T2 - Annual Conference of the Society for General and Applied Microbiology (VAAM) CY - Wolfsburg, Germany DA - 15.04.18 KW - Biotechnology KW - Termites KW - Anti-microbial effects PY - 2018 AN - OPUS4-44987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, U. A1 - McMahon, Dino Peter A1 - Rolff, J. T1 - Exposure of the wild bee Osmia bicornis to the honey bee pathogen Nosema ceranae JF - Agricultural and forest entomology N2 - Wild bees are important pollinators for agricultural crops and solitary species such as Osmia bicornis are particularly suitable for pollination management. Wild bees share floral resources with managed honey bees and may be exposed to emerging infectious diseases. Although studies have explored the prevalence of pathogens in solitary wild bee species, data regarding the impact of pathogens on solitary bee health are lacking. We carried out experiments examining whether the solitary bee species O. bicornis is susceptible to infection with the emerging pathogen The results obtained indicate that N. ceranae may be able to infect O. bicornis but its impact on host fitness is negligible: survival rates did not differ between Control and inoculated bees, although male survival was marginally lower after infection. To explore the possible field-relevance of our findings, we collected wild bees near an infected and a non-infected hive and showed that N. ceranae was shared between managed and wild bees, although only the in presence of infected honey bees. The findings of the present study show that O. bicornis is susceptible to pathogen spillover and could act as a potential reservoir host for N. ceranae in pollinator networks. Additional studies on this species incorporating sublethal effects, multiple infections and other interacting stressors are warranted. KW - Wild bees KW - Nosema ceranae KW - Osmia bicornis KW - Pathogen spillover KW - Survival rates PY - 2019 DO - https://doi.org/10.1111/afe.12338 SN - 1461-9555 SN - 1461-9563 VL - 21 IS - 4 SP - 363 EP - 371 PB - Wiley AN - OPUS4-49648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - McMahon, Dino Peter A1 - Wilfert, L. A1 - Paxton, R.J. A1 - Brown, M.J.F. T1 - Emerging viruses in bees: From molecules to ecology T2 - Advances in Virus Research N2 - Emerging infectious diseases arise as a result of novel interactions between populations of hosts and pathogens, and can threaten the health and wellbeing of the entire spectrum of biodiversity. Bees andtheir viruses area case in point. However, detailed knowledge of the ecological factors and evolutionary forces that drive disease emergence in bees and other host–pathogen communities is surprisingly lacking. In this review, we build on the fundamental insight that viruses evolve and adapt over timescales that overlap with host ecology. At the same time, we integrate the role of host community ecology, including community structure and composition, biodiversity loss, and human driven disturbance, all of which represent significant factors in bee virus ecology. Both of these evolutionary and ecological perspectives represent major advances but, in most cases, it remains unclear how evolutionary forces actually operate across different biological scales (e.g., from cell to ecosystem). We present a molecule-to-ecology framework to help address these issues, emphasizing the role of molecular mechanisms as keybottom-up drivers of change at higher ecological scales. We consider the bee–virus system to be an ideal one in which to apply this framework. Unlike many other animal models, bees constitute a well characterized and accessible multispecies assemblage, whose populations and interspecific interactions can be experimentally manipulated and monitored in high resolution across space and time to provide robust tests of prevailing theory. KW - Emerging KW - Virus KW - Pathogen KW - Bee KW - Disease PY - 2018 DO - https://doi.org/10.1016/bs.aivir.2018.02.008 SN - 0065-3527 VL - 101 SP - 251 EP - 291 AN - OPUS4-46324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -