TY - JOUR A1 - Chubarenko, B. A1 - Kileso, A. A1 - Esiukova, E. A1 - Pinchuk, V. A1 - Simon, Franz-Georg T1 - Dataset on geosynthetic material debris contamination of the South-East Baltic shore N2 - The database gives information on the contamination of the shore of the South-Eastern Baltic with the debris of geosynthetic materials for the period 2018–2020. This new type of coastal pollution enters the natural environment due to the destruction of coastal protection structures and construction activities. The database contains sections: (1) a list of types of geosynthetic material residues, their photographic images and photographs illustrating examples of finds in natural conditions [1 List_geosynthetic_debris_SEB], (2) monitoring data on the contamination of the beach strip with the debris of geotextiles, braids from gabions, geocontainers (big bags), geocells and geogrids for the beaches of the South-Eastern Baltic for the period 2018–2020 [2 Monitoring_geosynthetic_debris_SEB]; (3) statistical distributions of the found geosynthetic debris by size [3 Scales_geosynthetic_debris_SEB] and (4) results of test surveys on the shores of Lithuania and Poland adjacent to Kaliningrad Oblast. All data refer to the beaches of the Kaliningrad Oblast (Russia), including the Russian parts of the Vistula and Curonian Spits, but also contains information on a one-time assessment of the pollution of the beaches of the adjacent territories: the Polish shore from the Poland-Russia border on the Vistula Spit to the mouth of the Vistula River, the Lithuanian shore from the border Lithuania-Russia on the Curonian Spit to the border of Latvia-Lithuania. Materials were collected during field surveys within the ERANET-RUS_Plus joint project EI-GEO, ID 212 (RFBR 18-55-76002 ERA_a, BMBF 01DJ18005). KW - Geosynthetics KW - Geotextiles KW - Contamination KW - Marine littering PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541947 DO - https://doi.org/10.1016/j.dib.2021.107778 SN - 2352-3409 VL - 40 SP - 1 EP - 7 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-54194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - The impact and potential of halophilic microorganisms on alternative fuels N2 - As more industrial interests focusing on using salt caverns and repurposed gas or petroleum reservoirs for alternative fuel storage, i.e. CO2/H2, the question raises whether microorganisms may impact the infrastructure, gas purity and storage condition over time. Environments with high salinity (> 1.5 Meq of NaCl) are resided by halophiles (salt-loving microorganisms). To compensate for the intensive osmotic stress, they have resorted to two main adaptation strategies: 1) production of compatible solutes and 2) accumulation of intracellular KCl. Microbial community analysis of several high salinity environments revealed a number of recurring genera, including Halomonas and Halanaerobium. However, the impact of halophiles on the overall integrity and stability of the storage facilities remain largely unknown. To evaluate the suitability and stability of saline storage facilities, several model halophilic microorganisms, such as members of Halomonas, will be selected as testing subjects. First, the impact of halophiles on the infrastructure will be determined using an integrative approach by combining a number of techniques, including electrochemistry, TOF-SIMS, SEM/FIB/EDS and FIB-TEM. Second, the abilities of halophiles to alter the fuel composition (i.e. increase/decrease the fractions of H2) will be monitored using gas chromatography by growing them under high pressure. As a result of climate change and the accompanying mandatory shift to renewable energy resources, microorganisms will continue to play an important role in the energy sector, both to their benefit and detriment. Thus, it is important to achieve a certain level of understanding regarding the activities and mechanisms of halophiles prior to large-scaled excursions. T2 - ISMOS-8 CY - Online meeting DA - 07.06.2021 KW - Microbiologically influenced corrosion KW - Hydrogen KW - Gas storage KW - Contamination PY - 2021 AN - OPUS4-52891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -