TY - JOUR A1 - Hobmeier, K. A1 - Cantone, M. A1 - Nguyen, Q. A. A1 - Pflüger-Grau, K. A1 - Kremling, A. A1 - Kunte, Hans-Jörg A1 - Pfeiffer, F. A1 - Marin-Sanguino, A. T1 - Adaptation to varying salinity in Halomonas elongata: Much more than ectoine accumulation N2 - The halophilic γ-proteobacterium Halomonas elongata DSM 2581T thrives at salt concentrations well above 10 % NaCl (1.7 M NaCl). A well-known osmoregulatory mechanism is the accumulation of the compatible solute ectoine within the cell in response to osmotic stress. While ectoine accumulation is central to osmoregulation and promotes resistance to high salinity in halophilic bacteria, ectoine has this effect only to a much lesser extent in non-halophiles. We carried out transcriptome analysis of H. elongata grown on two different carbon sources (acetate or glucose), and low (0.17 M NaCl), medium (1 M), and high salinity (2 M) to identify additional mechanisms for adaptation to high saline environments. To avoid a methodological bias, the transcripts were evaluated by applying two methods, DESeq2 and Transcripts Per Million (TPM). The differentially transcribed genes in response to the available carbon sources and salt stress were then compared to the transcriptome profile of Chromohalobacter salexigens, a closely related moderate halophilic bacterium. Transcriptome profiling supports the notion that glucose is degraded via the cytoplasmic Entner-Doudoroff pathway, whereas the Embden-Meyerhoff-Parnas pathway is employed for gluconeogenesis. The machinery of oxidative phosphorylation in H. elongata and C. salexigens differs greatly from that of non-halophilic organisms, and electron flow can occur from quinone to oxygen along four alternative routes. Two of these pathways via cytochrome bo' and cytochrome bd quinol oxidases seem to be upregulated in salt stressed cells. Among the most highly regulated genes in H. elongata and C. salexigens are those encoding chemotaxis and motility proteins, with genes for chemotaxis and flagellar assembly severely downregulated at low salt concentrations. We also compared transcripts at low and high-salt stress (low growth rate) with transcripts at optimal salt concentration and found that the majority of regulated genes were down-regulated in stressed cells, including many genes involved in carbohydrate metabolism, while ribosome synthesis was up-regulated, which is in contrast to what is known from non-halophiles at slow growth. Finally, comparing the acidity of the cytoplasmic proteomes of non-halophiles, extreme halophiles and moderate halophiles suggests adaptation to an increased cytoplasmic ion concentration of H. elongata. Taken together, these results lead us to propose a model for salt tolerance in H. elongata where ion accumulation plays a greater role in salt tolerance than previously assumed. KW - Ectoine KW - Osmoadaptation PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545608 SN - 1664-302X VL - 13 SP - 1 EP - 19 PB - Frontiers Media CY - Lausanne AN - OPUS4-54560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vandrich, Jasmina A1 - Pfeiffer, F. A1 - Alfaro Espinoza, Gabriela A1 - Kunte, Hans-Jörg T1 - Contribution of mechanosensitive channels to osmoadaptation and ectoine excretion in Halomonas elongata N2 - For osmoadaptation the halophilic bacterium Halomonas elongata synthesizes as its main compatible solute the aspartate derivative ectoine. H. elongata does not rely entirely on synthesis but can accumulate ectoine by uptake from the surrounding environment with the help of the osmoregulated transporter TeaABC. Disruption of the TeaABC-mediated ectoine uptake creates a strain that is constantly losing ectoine to the medium. However, the efflux mechanism of ectoine in H. elongata is not yet understood. H. elongata possesses four genes encoding mechanosensitive channels all of which belong to the small conductance type (MscS). Analysis by qRT-PCR revealed a reduction in transcription of the mscS genes with increasing salinity. The response of H. elongata to hypo- and hyperosmotic shock never resulted in up-regulation but rather in downregulation of mscS transcription. Deletion of all four mscS genes created a mutant that was unable to cope with hypoosmotic shock. However, the knockout mutant grew significantly faster than the wildtype at high salinity of 2 M NaCl, and most importantly, still exported 80% of the ectoine compared to the wildtype. We thus conclude that a yet unknown system, which is independent of mechanosensitive channels, is the major export route for ectoine in H. elongata. KW - Halomonas elongata KW - Ectoine KW - Osmotic shock KW - Solute excretion KW - Osmoadaptation KW - Mechanosensitive channel KW - MscS PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-507229 VL - 24 SP - 421 EP - 432 PB - Springer AN - OPUS4-50722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kunte, Hans-Jörg T1 - Effect of Ectoine on DNA: Mechanisms of Interaction and Protection N2 - The compatible solute ectoine is a versatile protectant synthesized by many prokaryotes. It is used as an osmolyte helping microorganisms to maintain an osmotic equilibrium. In addition, ectoine acts as a stabilizer and protects proteins, membranes and whole cells against detrimental effects such as freezing and thawing, drying and high temperatures. Its protective effect is explained by the preferential exclusion model, which postulates that ectoine does not directly interact with biomolecules but is excluded from their surface. Interestingly, details on the interaction of ectoine with DNA are still unknown. Therefore, we studied the influence of ectoine on DNA and the mechanisms by which ectoine protects DNA against ionizing radiation. To emulate biological conditions, we used a sample holder comprising a silicon chip with a Si3N4 membrane, which allows for electron irradiation of DNA in aqueous solution. Analysis by atomic force microscopy revealed that without ectoine, DNA was damaged by irradiation with a dose of 1,7 +/-0,3 Gy. With ectoine, DNA remained undamaged, even after irradiation with 15 Gy. Simulations with dsDNA and ectoine in water revealed a preferential binding of the zwitterionic ectoine to the negatively charged DNA. According to the simulations, binding of ectoine will destabilize dsDNA. Destabilizing is probably caused by the transition of B-DNA to A-DNA and will reduce the DNA melting temperature, which was experimentally proven. The preferential binding provides a stable ectoine shell around DNA, which allows ectoine to reduce OH-radicals and electrons near the DNA and thereby mitigating the damaging effect of ionizing radiation. T2 - Halophiles 2019 CY - Cluj-Napoca, Romania DA - 24.06.2019 KW - Ectoine KW - Ionizing radiation KW - Preferential binding PY - 2019 AN - OPUS4-48618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wittmar, J. A1 - Ohle, Corina A1 - Kunte, Hans-Jörg A1 - Brand, I. T1 - Effect of Ectoine on the Conformation and Hybridization of dsDNA in Monolayer Films: A Spectroelectrochemical Study N2 - Lack of long-time stability of dsDNA-based supramolecular assemblies is an important issue that hinders their applications. In this work, 20 base pairs long dsDNA fragments [(dCdG)20 65%] composed of 65% dCdG and 35% dAdT nucleotides were tethered via a thiol to the surface of a gold electrode. The selfassembled (dCdG)20 -65% monolayer was immersed in solutions containing ectoine, a compatible solute. Electrochemical results showed that these monolayers were stable for one month. In situ IR spectroscopy indicated that ectoine interacts weakly with the phosphate-ribose backbone, dehydrating the phosphate groups and stabilizing the A-DNA conformation. This structural reorganization led to a reorientation of nucleic acid base pairs and a local disruption of the double-helix structure. However, the conformation and orientation of the dsDNA fragment was stable in the KW - Ectoine KW - dsDAN monolayer KW - A-DNA conformation PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-533346 SN - 2196-0216 VL - 8 IS - 20 SP - 3844 EP - 3854 PB - Wiley-VCH GmbH AN - OPUS4-53334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oprzeska-Zingrebe, E. A. A1 - Meyer, Susann A1 - Roloff, Alexander A1 - Kunte, Hans-Jörg A1 - Smiatek, J. T1 - Influence of compatible solute ectoine on distinct DNA structures: thermodynamic insights into molecular binding mechanisms and destabilization effects N2 - In nature, the cellular environment of DNA includes not only water and ions, but also other components and co-solutes, which can exert both stabilizing and destabilizing effects on particular oligonucleotide conformations. Among them, ectoine, known as an important osmoprotectant organic co-solute in a broad range of pharmaceutical products, turns out to be of particular relevance. In this article, we study the influence of ectoine on a short single-stranded DNA fragment and on double-stranded helical B-DNA in aqueous solution by means of atomistic molecular dynamics (MD) simulations in combination with molecular theories of solution. Our results demonstrate a conformation-dependent binding behavior of ectoine, which favors the unfolded state of DNA by a combination of electrostatic and dispersion interactions. In conjunction with the Kirkwood–Buff theory, we introduce a simple Framework to compute the influence of ectoine on the DNA melting temperature. Our findings reveal a significant linear decrease of the melting temperature with increasing ectoine concentration, which is found to be in qualitative agreement with results from denaturation experiments. The outcomes of our Computer simulations provide a detailed mechanistic rationale for the surprising destabilizing influence of ectoine on distinct DNA structures. KW - Ectoine KW - DNA KW - Thermodynamic KW - Melting temperature PY - 2018 U6 - https://doi.org/10.1039/c8cp03543a SN - 1463-9076 SN - 1463-9084 VL - 20 IS - 40 SP - 25861 EP - 25874 PB - Royal Society of Chemistry AN - OPUS4-46327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Vandrich, Jasmina T1 - Metabolic engineering in Halomonas elongata N2 - Halomonas elongata is a halophilic γ-proteobacterium that synthesizes and accumulates the compatible solute ectoine to cope with osmotic stress in saline environments. Ectoine possesses protecting properties and stabilizes proteins as well as whole cells against stresses like ionizing radiation and cytotoxins. These properties make ectoine a highly demanded ingredient in cosmetics and pharmaceuticals. To date H. elongata is the industrial Producer strain of ectoine, but several metabolic factors for optimum ectoine production remain to be explored. In this work, we used up to date Metabolic engineering approaches following the ‘Push, Pull, Block – strategy’ to examine targets that contribute to ectoine synthesis. Firstly, the basics of glucose catabolism were inspected to PUSH and enhance carbon flow towards ectoine synthesis. Secondly, lysine biosynthesis was targeted to BLOCK a pathway that is competing for precursors with ectoine synthesis. Thirdly, the mechanosensitive (MS) channels of H. elongata have been examined as possible excretion routes for ectoine. An overexpression of the ectoine excretion channels potentially could PULL out product at the end of ectoine synthesis and increase overall ectoine flux. For the interrogation of central metabolic pathways, we established the new molecular tool CRISPR-mediated interference (CRISPRi) for targeted modulation of gene expression. PUSH Glucose catabolism through the Entner-Doudoroff (ED) and Emden-Meyerhof-Parnas (EMP) pathway was targeted with CRISPRi and examined on gene expression level for ist response to changing salinity and different carbon sources. Changing salinity did not influence gene expression levels of glucose catabolism but the carbon source glucose triggered glycolysis through the (ED) pathway. When gene expression of the ED pathway was downregulated with CRISPRi, the growth rates remained constant. The observations indicate a metabolic overflow mechanism for glycolysis, in which fluxes are constantly high - even at lower salinity when no resources are demanded for ectoine synthesis. The further analysis of glucose to product conversion rates will advise optimum conditions for future industrial cultivation processes. BLOCK Lysine biosynthesis was downregulated with CRISPRi, which led to a significant increase in ectoine production. Hence, the blockage of lysine biosynthesis would be a valuable strategy for the optimization of the industrial producer strain in future studies. PULL MS channels and ectoine regulation are inevitably connected in osmoadaptation. Therefore, ectoine excretion, growth performance and gene expression levels of the MS channels were monitored in steady state conditions and in response to osmotic shock in the wildtype strain and in a MS channel deletion mutant. We observed that the MS channels were essential for the survival of osmotic shock but surprisingly their presence reduced cell growth under high salinity. The MS channels were only partially responsible for ectoine excretion. Thus, alternative ectoine excretion channels must exist and remain to be explored. KW - Halomonas elongata KW - Ectoine KW - CRISPR dCas9 PY - 2019 SP - 1 EP - 94 CY - Potsdam AN - OPUS4-51094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Kunte, Hans-Jörg A1 - Schwarz, T. A1 - Galinski, E. A. ED - Lee, N. M. T1 - The compatible solute ectoine: protection mechanisms, strain development, and industrial production N2 - Bacteria, Archaea, and Eukarya can adapt to saline environments by accumulating compatible solutes in order to maintain an osmotic equilibrium. Compatible solutes are of diverse chemical structure (sugars, polyols, amino acid derivatives) and are beneficial for bacterial cells not only as osmoregulatory solutes but also as protectants of proteins by mitigating detrimental effects of freezing, drying, and high temperatures. The aspartate derivative ectoine is a widespread compatible solute in Bacteria and possesses additional protective properties compared with other compatible solutes and stabilizes even whole cells against stresses such as ultraviolet radiation or cytotoxins. Here, it is our intention to go beyond a simple description of effects, but to depict the molecular interaction of ectoine with biomolecules, such as proteins, membranes, and DNA and explain the underlying principles. The stabilizing properties of ectoine attracted industry, which saw the potential to market ectoine as a novel active component in health care products and cosmetics. In joint efforts of industry and research, a large-scale fermentation procedure has been developed with the halophilic bacterium Halomonas elongata used as a producer strain. The development and application of ectoine-excreting mutants from H. elongata (“leaky” mutants) allow for the annual production of ectoine on a scale of tons. The details of the strain development and fermentation processes will be introduced. KW - Ectoine KW - Biotechnology KW - Compatible solute KW - Preferential exclusion KW - Osmophobic effect PY - 2020 SN - 978-3-11-042773-8 SP - 121 EP - 136 PB - De Gruyter AN - OPUS4-51472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wittmar, J. A1 - Meyer, Susann A1 - Sieling, T. A1 - Kunte, Hans-Jörg A1 - Smiatek, Jens A1 - Brand, Izabella T1 - What Does Ectoine Do to DNA? A Molecular-Scale Picture of Compatible Solute−Biopolymer Interactions N2 - Compatible solutes are accumulated in the cytoplasm of halophilic microorganisms. These molecules enable their survival in a high salinity environment. Ectoine is such a compatible solute. It is a zwitterionic molecule which strongly interacts with surrounding water molecules and changes the dynamics of the local hydration shell. Ectoine interacts with biomolecules such as lipids, proteins and DNA. The molecular interaction between ectoine and biomolecules in particular the interaction between ectoine and DNA is far from being understood. In this paper we describe molecular aspects of the interaction between ectoine and double stranded DNA(dsDNA). Two 20 base pairs long dsDNA fragments were immobilized on a Gold surface via a thiol-tether. The interaction between the dsDNA monolayers with diluted and concentrated ectoine solutions was examined by means of X-ray photoelectron and polarization modulation infrared reflection absorption spectroscopies (PM IRRAS). Experimental results indicate that the ability of ectoine to bind water reduces the strength of hydrogen bonds formed to the ribose-phosphate backbone in the dsDNA. In diluted (0.1 M) ectoine solution, DNA interacts predominantly with water molecules. The sugar-phosphate backbone is involved in the formation of strong hydrogen bonds to water, which with elapsing time leads to a reorientation of the planes of nucleic acid bases. This reorientation destabilizes the hydrogen bonds strength between the bases and leads to a partial dehybridizaiton of the dsDNA. In concentrated ectoine solution (2.5 M), almost all water molecules interact with ectoine. Under this condition ectoine is able to interact directly with DNA. Density functional theory (DFT) calculations demonstrate that the direct interaction involves the nitrogen atoms in ectoine and phosphate groups in the DNA molecule. The results of the quantum chemical calculations Show that rearrangements in the ribose-phosphate backbone, caused by a direct interaction with ectoine, facilitates contacts between O atom in the phosphate group and H atoms in a nucleic acid base. In the PM IRRA spectra, an increase in the number of the IR absorption modes in the base pair frequency region proves that the hydrogen bonds between bases become weaker. Thus, a sequence of reorientations caused by interaction with ectoine leads to a breakdown of hydrogen bonds between bases in the double helix. KW - Compatible solute KW - Ectoine KW - DNA KW - Self-assembled monolayer KW - IR spectroscopy KW - XPS PY - 2020 U6 - https://doi.org/10.1021/acs.jpcb.0c05273 VL - 124 IS - 37 SP - 7999 EP - 8011 PB - ACS Publicatios AN - OPUS4-51182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -