TY - CHAP A1 - Adam, Christian A1 - Krüger, Oliver ED - IWA Publishing, T1 - Wastewater as a resource: From rare earth metals to phosphorus T2 - Phosphorus: Polluter and Resource of the Future N2 - Wastewater contains a diverse array of organic and inorganic compounds and its complex composition strongly depends on the location and the connected dischargers. However, municipal wastewater as a carrier of feces and urine generally contains considerable amounts of the main nutrients nitrogen and phosphorus. The latter is in the focus of the discussions about the recovery potential of wastewater due to the relatively high mass flows of phosphorus in wastewater and the finite nature and decreasing quality of phosphate rock reserves. But due to the presence of the whole periodic table of elements, wastewater might contain further valuable components of interest for recovery including those defined as critical raw materials by the European Commission. Phosphorus and most of the other critical raw materials are fixed in the sewage sludge and after incineration in the sewage sludge ash (SSA). This is accompanied by high concentration factors from wastewater via sludge to ash. However, the mass fractions of the majority of elements in sewage sludge are comparable to those of the earth crust, indicating no relative enrichment. Nevertheless, enrichment factors of 100 or higher are given for phosphorus, copper, zinc, cadmium, silver, tin, lead and the platinum group elements indicating an anthropogenic input. An economic value of sewage sludge was estimated to $460,-/t calculated on the basis of the respective market prices for high purity elements – a theoretical value. A German survey of sewage sludge ashes showed that the mass fractions and the mass flows of most of the elements present in SSA are probably too low for an economic recovery. In most cases the mass flows are rather small compared to the imports and the chemical forms are not suitable for recovery. An exception is phosphorus that is present in high mass fractions up to 13% and that bears a high substitution potential. If the application of P-recovery technologies lead to a further concentration of valuable elements e.g. as by-products in side streams of the process, it would probably make also the recovery of other elements of economic interest. KW - Wastewater KW - Sewage sludge PY - 2018 SN - 978-1-78040-835-4 SN - 978-1-78040-836-1 SN - 978-1-78040-954-2 DO - https://doi.org/10.2166/9781780408361 SP - 241 EP - 252 PB - IWA Publishing CY - London AN - OPUS4-45679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roesch, Philipp A1 - Vogel, Christian A1 - Huthwelker, T. A1 - Wittwer, Philipp A1 - Simon, Franz-Georg T1 - Investigation of per‑ and polyfluoroalkyl substances (PFAS) in soils and sewage sludges by fluorine K‑edge XANES spectroscopy and combustion ion chromatography JF - Environmental Science and Pollution Research N2 - For the first time, fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy was applied to detect per- and polyfluoroalkyl substances (PFAS) in various soil and sewage sludge samples. The method can be used to determine the speciation of inorganic and organic fluorides, without pre-treatment of solid samples. Therefore, XANES spectra of several inorganic fluorides as well as selected fluorinated organic compounds were recorded. While inorganic fluorides partially exhibit a variety of sharp spectral features in the XANES spectrum, almost all inspected organofluorine compounds show two distinct broad features at 688.5 and 692.0 eV. Moreover, the peak intensity ratio 688.5 eV/692.0 eV in the PFAS XANES spectrum can be inversely correlated to the chain length of the perfluoro sulfonic acid group. The detection of targeted PFAS by bulk-XANES spectroscopy in combination with linear combination fitting in soils and sewage sludges was not applicable due to the low organic fluorine to total fluorine ratio of the samples (0.01–1.84%). Nonetheless, direct analysis of pure PFAS revealed that analysis of organofluorine species might be achieved in higher concentrated samples. Furthermore, quantitative measurements by combustion ion chromatography (CIC) evaluated as sum parameters extractable organically bound fluorine (EOF) and total fluorine (TF) emphasize that besides soils, sewage sludges are a significant source of organic fluorine in agriculture (154–7209 μg/kg). KW - Sewage sludge KW - Combustion ion chromatography KW - Oil KW - X-ray absorption near-edge structure (XANES) spectroscopy KW - Per- and polyfluoroalkyl substances (PFAS) PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538953 DO - https://doi.org/10.1007/s11356-021-17838-z VL - 29 IS - 18 SP - 26889 EP - 26899 PB - Springer AN - OPUS4-53895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sichler, Theresa Constanze A1 - Adam, Christian A1 - Barjenbruch, M. A1 - Montag, D. A1 - Mauch, Tatjana A1 - Sommerfeld, Thomas A1 - Ehm, J.H. T1 - Variation of the element composition of municipal sewage sludges in the context of new regulations on phosphorus recovery in Germany JF - Environmental Sciences Europe N2 - Phosphorus (P) recovery is obligatory for all sewage sludges with more than 20 g P/kg dry matter (DM) from 2029 in Germany. Nine wastewater treatment plants (WWTPs) were chosen to investigate variations of phosphorus contents and other parameters in sewage sludge over the year. Monthly sewage sludge samples from each WWTP were analyzed for phosphorus and other matrix elements (C, N, H, Ca, Fe, Al, etc.), for several trace elements (As, Cr, Mo, Ni, Pb, Sn) and loss of ignition. Among the nine WWTPs, there are four which have phosphorus contents both above and below the recovery limit of 20 g/kg DM along the year. Considering the average phosphorus content over the year, only one of them is below the limit. Compared to other matrix elements and parameters, phosphorus fuctuations are low with an average of 7% over all nine WWTPs. In total, only hydrogen and carbon are more constant in the sludge. In several WWTPs with chemical phosphorus elimination, phosphorus fuctuations showed similar courses like iron and/or aluminum. WWTPs with chamber flter presses rather showed dilution efects of calcium dosage. As result of this study, monthly phosphorus measurement is highly recommended to determine whether a WWTP is below the 20 g/kg DM limit. KW - Sewage sludge KW - Phosphorus recovery KW - Wastewater KW - Phosphorus elimination PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557499 DO - https://doi.org/10.1186/s12302-022-00658-4 SN - 2190-4707 VL - 34 IS - 1 SP - 1 EP - 12 PB - Springer Nature CY - Berlin AN - OPUS4-55749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sichler, Theresa Constanze A1 - Adam, Christian A1 - Becker, Roland A1 - Sauer, Andreas A1 - Ostermann, Markus A1 - Barjenbruch, M. T1 - Phosphorus determination in sewage sludge: comparison of different aqua regia digestion methods and ICP-OES, ICP-MS and photometric determination JF - Environmental Sciences Europe N2 - Phosphorus recycling from sewage sludge will be obligatory in Germany from 2029. Phosphorus content determination in sewage sludge is crucial to assess the prescribed recycling rates. Currently, German law regards sample preparation using aqua regia digestion in a microwave or under reflux conditions as well as instrumental phosphorus determination by ICP-OES, ICP-MS, or photometric determination with ammonium molybdate as equivalent. However, it is questionable whether these methods are indeed equivalent regarding phosphorus quantification in sludges near the limit of 20 g/kg for mandatory recycling. To answer this question, 15 sewage sludges of 11 different wastewater treatment plants were investigated with all permitted method (digestion and measurement) combinations. Moreover, one sewage sludge was also examined in an interlaboratory comparison (ILC) with 28 participants. This study shows that the above-mentioned methods differ in some cases significantly but across all method combinations and sludges, phosphorus recovery was between 80 and 121% after normalization to the grand mean (average of 15 sludges between 85 and 111%). The ILC and the examination of 15 sludges produced largely similar results. There is a tendency to higher phosphorus recovery after microwave digestion compared to reflux digestion and ICP-OES measurements determine higher phosphorus contents than ICP-MS and photometric phosphorus determination. As a result, the authors recommend ICP-OES determination of phosphorus in sewage sludge after microwave digestion. KW - Sewage sludge KW - ICP-OES KW - Phosphous recovery KW - ICP-MS KW - Photometric P determination KW - Interlaboratory comparison PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-558869 DO - https://doi.org/10.1186/s12302-022-00677-1 VL - 34 IS - 99 SP - 1 EP - 14 PB - Springer AN - OPUS4-55886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sichler, Theresa Constanze A1 - Adam, Christian A1 - Montag, D. A1 - Barjenbruch, M. T1 - Future nutrient recovery from sewage sludge regarding three different scenarios - German case study JF - Journal of Cleaner Production N2 - Agricultural sewage sludge utilization becomes less important in Germany. In 2017, new fertilizer and waste laws caused the agricultural sewage sludge utilization to collapse by more than a quarter. From 2029, German wastewater treatment plants (WWTPs) must recover phosphorus (P) from sewage sludge if it contains more than 2 wt % P. Agricultural utilization will be prohibited for large WWTPs >100,000 population equivalents (pe) from 2029 and >50,000 pe from 2032. In Germany, each federal state must annually report amounts and quality of agriculturally utilized sewage sludge which was 16% of the total disposal in 2019. The reports of 10 states were evaluated for 2016 and 2017 representing approx. 60% of the total agriculturally used sludge volume. In 2016, 60% of the WWTPs’ sludges exceeded the recovery limit of 2 wt % P which is 70% of the amount of sludge and 85% of the phosphorus load. Other nutrients are not affected by the recovery obligation. However, many P recovery processes recover other nutrients, too. Considering three different scenarios for future German sewage sludge disposal shows that 70–77% of the P load in sewage sludge will probably be recovered in the future. At the same time, this applies for about 0–16% nitrogen, 36–52% of calcium, 31–53% of potassium, and 40–52% of magnesium. However, these recovered nutrients loads can substitute only 1% or less of the commercial fertilizer demand except from phosphorus which is up to 43% of the demand. KW - Sewage sludge KW - Phosphorus recovery KW - Wastewater KW - Sewage sludge disposal PY - 2022 DO - https://doi.org/10.1016/j.jclepro.2021.130130 VL - 333 SP - 1 EP - 10 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-54186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smol, M. A1 - Adam, Christian A1 - Krüger, O. T1 - Use of nutrients from wastewater for the fertilizer industry - approaches towards the implementation of the circular economy (CE) JF - Desalination and Water Treatment N2 - More sustainable waste management practices are an important element in the Transformation towards a circular economy (CE). Activities in this area should be dedicated to all groups of waste, including those generated in the water and sewage sector. This paper presents the characteristics of sewage sludge ash (SSA) coming from Polish municipal waste incineration plants. Due to the high content of nutrients such as phosphorus (8.01% P2O5), calcium (5.11% CaO) and magnesium (2.75% MgO), the analyzed SSA may constitute a valuable source of raw materials for the fertilizer industry. Despite the good fertilizing properties of the SSA, in some cases the presence of heavy metals such as cadmium (0.74–1.4 mg/kg dry matter), lead (49.8–99 mg/kg dry matter), mercury (3.93 mg/kg dry matter) and arsenic (4.23–4.43 mg/kg dry matter) and poor bioavailability of P from SSA disqualifies this waste from direct use as a fertilizer. Therefore, it is necessary to look for methods that will allow the municipal SSA to be processed, for example, technologies for the extraction of phosphorus and the production of phosphate fertilizer. This way of SSA management is in the line with the CE assumptions, in which waste becomes a valuable source of secondary raw materials. Fertilizer produced from waste meeting quality, safety and labelling requirements and limits of organic, microbiological and physical contaminants will be able to be traded freely within the European Union (EU) and receive the CE marking. The idea of use of SSA for fertilizer purposes is consistent not only with the objectives of the CE but also with the Polish National Waste Management Plan 2022 and the Municipal Sewage Sludge Strategy 2019–2022, which emphasizes the necessity to maximize the use of biogenic substances contained in wastewater. Therefore, sustainable management of SSA, in particular its storage in a way enabling the recovery of phosphorus, should be promoted. KW - Wastewater KW - Circular economy KW - Fertilizer KW - Sewage sludge KW - Phosphorus PY - 2020 DO - https://doi.org/10.5004/dwt.2020.25113 VL - 1 SP - 1 EP - 9 PB - Desalination Publications CY - Hopkinton, MA 01748, USA AN - OPUS4-50646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steckenmesser, D. A1 - Vogel, Christian A1 - Herzel, Hannes A1 - Félix, R. A1 - Adam, Christian A1 - Steffens, D. T1 - Thermal treatment of sewage sludge for phosphorus fertilizer production: a model experiment JF - Journal of Plant Nutrition N2 - Phosphorus (P) resource availability and quality is declining and recycling P-fertilizers from waste materials are becoming increasingly important. One important secondary P resource is sewage sludge (SSL) where P is often bound as aluminum phosphate (Al-P), iron phosphate (Fe-P) and polyphosphate (poly-P), respectively. Thermal treatment in different ways is a promising way in P recycling to produce highly plant-available P-fertilizers. To investigate mechanisms behind transformation of hardly available P-species toward plant-available P forms we treated a model SSL containing different kinds of defined P sources by low-temperature conversion (LTC) at 500 °C and subsequent thermochemical treatment of the LTC product with Na additives (TCT) at 950 °C, respectively. Pot experiments with ryegrass were carried out to determine the plant availability of P of the different treatments. The poly-P (here pyrophosphates) based fertilizers had a very high plant availability after both thermal treatments. During LTC treatment the plant availability of the Fe-P and Al-P variants increased because of the Formation of Fe(II) phosphates and/or pyro-/polyphosphates. Especially the formation of Al-polyphosphate shows a high plant availability. The subsequent TCT further increased strongly the plant availability of the Fe-P variants because of the formation of highly plant-available CaNaPO4. Thus, a direct TCT without prior LTC probably also produce CaNaPO4 and is recommended for Fe-P based SSL. However, a molar Ca/P ratio of � 1 in the fertilizer is favorable for CaNaPO4 formation. Thus, the knowledge on the source of primary P in SSL is essential for choosing the accurate thermal treatment method to produce highly plant-available P-fertilizers from SSL. KW - Phosphorus KW - Sewage sludge KW - X-ray diffraction KW - X-ray absorption near-edge structure (XANES) spectroscopy KW - Fertilizer PY - 2021 DO - https://doi.org/10.1080/01904167.2021.1994595 SN - 0190-4167 VL - 45 IS - 8 SP - 1123 EP - 1133 PB - Taylor & Francis Online AN - OPUS4-53755 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steckenmesser, D. A1 - Vogel, Christian A1 - Steffens, D. T1 - Medium-scale Plant Experiment of Sewage Sludge based Phosphorus Fertilizers from Large-scale Thermal Processing JF - Communications in Soil Science and Plant Analysis N2 - Phosphorus (P) recycling from sewage sludge for agricultural needs has to meet requirements for agricultural implementation, such as short and long-term P-plant-availability under field conditions. Field experiments often bring no evaluable results, because agricultural soils got a high potential of P-supply even if they are classified as low in P-supply according to the CAL extraction method. The present study presents a possible way to investigate the P-plant-availability of P-recycling-fertilizers under field-like conditions. The plant experiments are firstly performed in small Mitscherlich pots in growth chambers and subsequently in containers with a high soil volume of 170 kg under greenhouse conditions, in which plants can grow until ripening. The tested P-recycling fertilizers were produced from sewage sludge in a large-scale thermal process. It was a two-step treatment process performed with a pyrolysis of sewage sludge at 550°C (SSC-550) and a subsequent thermochemical post-treatment at 950°C with Na2SO4 (SSA-Na) and HCl + Na2SO4 (SSA-HCl/Na) as additives. The results show, that the P-recycling-products from pyrolysis got an adequate long-term but a 65% lower short-term P-plant-availability compared to triple superphosphate. SSA-Na and SSA-HCl/Na show both a high short and longterm P-plant-availability comparable to triple-superphosphate. This can be explained by their highly plant-available P-compound CaNaPO4. KW - Fertilzer KW - Sewage sludge KW - Plant Experiment KW - Thermal treatment PY - 2019 DO - https://doi.org/10.1080/00103624.2019.1667373 VL - 50 IS - 19 SP - 2469 EP - 2481 PB - Taylor & Francis AN - OPUS4-49143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Krüger, O. A1 - Gentzmann, Marie A1 - Adam, Christian T1 - Can we use passive samplers for the determination of chromium(VI) in phosphorus fertilizers? N2 - Phosphorus (P) fertilizers from secondary resources became increasingly important in the last years. However, these novel P-fertilizers can also contain toxic pollutants. Chromium in its hexavalent state (Cr(VI)) is regulated with low limit values for agricultural products due to its high toxicity, but the determination of Cr(VI) in these novel fertilizer matrices can be hampered by redox processes that lead to false results. Thus, we applied the passive sampler technique Diffusive Gradients in Thin-films (DGT) for the determination of Cr(VI) in fertilizers and compared the results with the standard wet chemical extraction method (German norm DIN EN 15192) and Cr K-edge X-ray absorption near-edge structure (XANES) spectroscopy. We determined an overall good correlation between the wet chemical extraction and the DGT method. DGT was very sensitive and in most cases selective for the analysis of Cr(VI) in P-fertilizers. However, hardly soluble Cr(VI) compounds cannot be detected with the DGT method since only mobile Cr(VI) is analyzed. Furthermore, Cr K-edge XANES spectroscopy showed that the DGT binding layer also adsorbs small amounts of mobile Cr(III) compounds which leads to overestimated Cr(VI) values. The results of certain types of P-fertilizers containing mobile Cr(III) or partly immobile Cr(VI), showed that optimization of the DGT method is required to avoid over- or underestimation of Cr(VI). T2 - International Passive Sampling Workshop (IPSW) 2021 virtual CY - Online meeting DA - 04.11.2021 KW - Phosphorus KW - Sewage sludge KW - Chromium KW - Fertilizer PY - 2021 AN - OPUS4-53699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Adam, Christian A1 - Kugler, Stefan A1 - Herzel, Hannes T1 - Phosphorus recovery from waste streams for fertilizer production N2 - Phosphorus (P) plays an essential role in the global food security. However, the global P reservoirs have a statistic lifetime of about 385 years only. Due to the scarcity of P and the increasing world population an efficient and sustainable recycling management is required. A few biogenic waste materials are high in P contents such as sewage sludge and meat and bone meal. Thus, they are suitable for P recycling and fertilizer production. But besides the high P content sewage sludge is often highly contaminated with organic pollutants and toxic heavy metals which have to be eliminated before agricultural field application. In this presentation we show the potential of sewage sludge as secondary resource for fertilizers. This includes our developments in thermochemical processes for the production of novel P-fertilizers from recycled materials. Furthermore, for these novel P-fertilizers common extraction tests to determine the plant-available P are often unusable. Therefore, we successfully applied the Diffusive gradients in thin-films (DGT) techniques to analyse the plant-availability of P-fertilizers from recycled materials. T2 - Eingeladener Vortrag an der University of South Australia CY - Mawson Lakes, Australia DA - 22.11.2018 KW - Phosphorus recovery KW - Sewage sludge KW - Diffusive Gradients in thin films (DGT) PY - 2018 AN - OPUS4-46764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -