TY - JOUR A1 - Seneschal-Merz, Karine A1 - Bücker, Michael A1 - Feldmann, Ines T1 - Low melting glasses for transparent and environmentally-resistant enamels N2 - Today glass is broadly used in modern architecture. For indoor applications it is possible to produce decorated glass by using enamel colours and glass painting techniques without any problems. However, this is more limited for applications out of doors. Humidity and environmental pollution attack the surface of the coating and can damage it. There are only a few colours on the market which are resistant towards acids and bases until now. Additionally, most of those colours are opaque. To extend the colour palette, chemically resistant low melting coloured glasses are being developed which are transparent and intensively toned even in thin coating thicknesses. To achieve such an ambitious aim, many parameters have to combine and act in a complex manner. New compositions of lead borosilicate, zinc borosilicate and lead-zinc borosilicate glasses were produced and milled as powder. The thermal properties as well as the environmental stability were analysed. The influence of PbO and ZnO on the thermal properties and the environmental stability were investigated. Evaluation of the fusing results shows that the production and mixture of transparent vitreous enamels for the exterior side of glasses is possible. The tests made it clear that the original materials for making the vitreous enamels must be excellently ground and prepared to achieve a satisfactory result. The method to produce durable vitreous enamels for exterior application also seems to allow the production of glass colours. KW - Low melting glasses KW - Enamels KW - Heavy metal free KW - Corrosion KW - Chemical durability KW - Aging tests KW - Architecture KW - Colored glasses PY - 2019 DO - https://doi.org/10.13036/17533546.60.4.002 SN - 1753-3546 SN - 1753-3554 VL - 60 IS - 4 SP - 97 EP - 104 PB - Society of Glass Technology CY - Sheffield, UK AN - OPUS4-48835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, K. H. A1 - Sattari, S. A1 - Beyranvand, S. A1 - Faghani, A. A1 - Ludwig, K. A1 - Schwibbert, Karin A1 - Böttcher, C. A1 - Haag, R. A1 - Adeli, M. T1 - Thermoresponsive Amphiphilic Functionalization of Thermally Reduced Graphene Oxide to Study Graphene/Bacteria Hydrophobic Interactions N2 - An understanding of the interactions of 2D nanomaterials with pathogens is of vital importance to developing and controlling their antimicrobial properties. In this work, the interaction of functionalized graphene with tunable hydrophobicity and bacteria is investigated. Poly-(ethylene glycol)-block-(poly-N-isopropylacrylamide) copolymer (PEG-b-PNIPAM) with the triazine joint point was attached to the graphene Surface by a nitrene [2 + 1] cycloaddition reaction. By thermally switching between hydrophobic and hydrophilic states, functionalized graphene sheets were able to bind to bacteria. Bacteria were eventually disrupted when the functionality was switched to the hydrophobic state. On the basis of measuring the different microscopy methods and a live/dead viability assay, it was found that Escherichia coli (E. coli) bacteria are more susceptible to hydrophobic interactions than B. cereus bacteria, under the same conditions. Our investigations confirm that hydrophobic interaction is one of the main driving forces at the presented graphene/bacteria interfaces and promotes the antibacterial activity of graphene derivatives significantly. KW - 2D nanomaterials KW - Functionalized graphene KW - Antimicrobial KW - Hydrophobic interaction PY - 2019 DO - https://doi.org/10.1021/acs.langmuir.8b03660 VL - 35 IS - 13 SP - 4736 EP - 4746 PB - ACS Publications AN - OPUS4-49235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Q. A1 - Zheng, M. A1 - Huang, Y. A1 - Kunte, Hans-Jörg A1 - Wang, X. A1 - Liu, Y. A1 - Zheng, C. T1 - Long term corrosion estimation of carbon steel, titanium and its alloy in backfill material of compacted bentonite for nuclear waste repository N2 - The container of high-level radioactive waste (HLRW) being in deep geological disposal, the backfill material is needed to serve as the second defense for HLRW and the highly compacted bentonite is generally selected. As the time goes, the underground water will infiltrate the backfill, causing the corrosion of materials for the building of containers in the formed electrolyte. Carbon steel, titanium and its alloy are the potential candidate materials for the fabrication of HLRW containers. The current investigation aims at assessing the safety of HLRW container in deep geological disposal for hundreds of thousands of years and facilitating the material selection for future Container fabrication by estimating their corrosion behavior in compacted bentonite with a series of moisture content at different temperatures through electrochemical methods including open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curve (PC) measurements. The corrosion rates were estimated for a carbon steel, a pure titanium and a titanium alloy in compacted Gaomiaozi Bentonite infiltrated with simulated underground water in Beishan area of China over an expected disposal period up to 106 years respectively, showing that titanium and its alloy are more reliable materials for building HLRW containers than carbon steel. KW - Issues KW - Disposal KW - Performance KW - Moisture KW - Lifetime KW - Water KW - Model PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492413 DO - https://doi.org/10.1038/s41598-019-39751-9 SN - 2045-2322 VL - 9 SP - 3195 PB - Nature Publishing Group AN - OPUS4-49241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pollakowski-Herrmann, Beatrix A1 - Seeger, Stefan A1 - Gross, A. A1 - Kayser, Y. A1 - Osan, J. A1 - Stabile, L. A1 - Beckhoff, B. T1 - Quantitative elemental analysis of ambient aerosol particles using portable TXRF N2 - A reliable analysis of aerosol particle is curial for enforcing EU air quality regulations to protect human health, and for research on climate change effects [1]. Although metrics such as PM10 and PM2.5 are currently in use, the level of uncertainty of aerosol metrics is too high and the traceability is insufficient. Within the AEROMET project [2] procedures are developed aiming at reducing the uncertainties of particle mass, size, and number concentration measurements including the characterization of regulated components in airborne particles. Here, we present an approach how to improve the uncertainties of the particle mass by mobile total reflection x-ray fluorescence (TXRF) analysis. The combination of TXRF and aerosols sampling techniques supported by reference-free synchrotron radiation-based XRF enables a quantitative real-time analysis of particle mass. During in-field campaigns, the procedure was tested, monitoring the size dependent mass concentrations of specific elements in ambient aerosols under dynamic conditions. This approach allows a direct time and size-resolved analysis without laborious digestion steps and a reduced risk of contamination. Aerosol particles were sampled in a 13-stage DLPI impactor on acrylic discs. TXRF analysis was performed on-site with the transportable spectrometer S2 PICOFOX (Bruker Nano GmbH). The TXRF quantification was based on internal standardization. At moderate air pollution levels (PM10 20 µg/m³) sampling times of less than 2 hours were enough to detect elements in different particle size bins. The on-site approach and the high sensitivity of TXRF enables the observation of rather quick changes in the quantity and distribution of elements in an ambient aerosol on the day of sampling. The analysis of the morning and afternoon sampling shifts reveals the occurrence of the elements Fe, Ca and Si in different size bins as well as their temporal change in respective mass concentrations over the day while the distributions of several other elements remain unchanged. T2 - 11th International Conference on “Instrumental Methods of Analysis” CY - Ioannina, Greece DA - 22.09.2019 KW - Air quality KW - Novel sample preparation techniques KW - Analytical chemistry KW - Metals PY - 2019 AN - OPUS4-49249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dombinov, V. A1 - Meiller, M. A1 - Müller, F. A1 - Herzel, Hannes A1 - Zang, J. W. A1 - Willbold, S. A1 - Poorter, H. A1 - Watt, M. A1 - Jablonownski, N. D. A1 - Schrey, S. D. T1 - Does co-combustion of bagasse and chicken manure affect the bioavailability of P from ash to soybeans? N2 - Brazilian farming industry consumed around 2.2 million tons of phosphorus (P) fertilizers in 2016. The agricultural industry depends on imported P fertilizers and over 98% of P fertilizers were used for sugarcane, soybean and maize production. An alternative is to use P from sugarcane bagasse. Bagasse is the fibrous plant material remaining after extraction of sugarcane juice, and it is combusted for energy production. Remaining ash con-tains up to 0.6 wt% P. The use of bagasse ash (BA) as P fertilizer could decrease the annual import of P fertilizers by 6% of the imported P fertilizer based on 2016 values. Since the bioavailability of P from BA to plants is poorly investigated, this study addresses the effects of (i) gasification tempera-ture (710-849°C), (ii) processing method (gasification vs. combustion), (iii) biomass modifications by co-processing bagasse with chicken manure (BA+CM), and (iv) the soil (Brazilian Oxisol soil vs. nutri-ent poor substrate) on the bioavailability of P from BA to soybeans (Glycine max). Gasification of BA at 806 °C resulted in significantly highest uptake of P by soybeans and was around 0.33 mmol after 51 days growing. The bioavailability of P significantly increased due to co-gasification of bagasse and chicken manure (BA+CM) and the soybeans took up around 16% more P. Compared to the nutrient-poor substrate, the bioavailability of P in BA+CM ash treated Oxisol soil was signifi-cantly lower by 46% and there was no significant effect of processing method on the bioavailability of P from the BA+CM ash to soybeans. Contrary to the Oxisol soil, the bioavailability of P from co-combusted BA+CM ash was significantly higher compared to co-gasified BA+CM ash. In conclusion, co-processing of bagasse with nutrient rich residues can increase the value of BA as P fertilizer. The bioavailability of P from ash to plants depends on the P forms. Mineralogical analyses of ash P forms by NMR and X-ray diffraction are in progress and will be presented at the conference. T2 - European Biomass Conference & Exhibition CY - Lisbon, Portugal DA - 26.05.2019 KW - Sugarcane bagasse KW - Chicken manure KW - Plant growth test KW - Bioavailability KW - Co-combustion PY - 2019 AN - OPUS4-49272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Werner W. A1 - Wöhlecke, Andreas T1 - Zero leakage? Landfill liner and capping systems in Germany N2 - An approach to achieve 'zero leakage' is discussed with respect to experience in Germany, where strict regulations for landfill lining and capping Systems have been developed and issued because of large environmental Problems related to landfills that accumulated in the 1970s and 1980s. Using a thick, high-quality high-density Polyethylene (HDPE) geomembrane (GM) that is installed free of residual waves and wrinkles in intimate contact with a compacted clay liner or geosynthetic clay liner of very low permeability, by a qualified, experienced, well-equipped and properly third-party-controlled installer, and which is protected by heavy protection layers designed with respect to the long-term performance of the GM may result in a liner or capping system of practically no leakage. This is demonstrated by analysing results of measurements obtained from permanently installed leak-detection Systems in combination with HDPE GMs. The survey was based on 32 German landfills with 1.276.500 m² of installed GMs. KW - Geomembranes KW - Landfill KW - Landfill lining PY - 2019 DO - https://doi.org/10.1680/jenge.16.00031 SN - 2051-803X VL - 6 IS - 3 SP - 1600031, 162 EP - 170 PB - ICE AN - OPUS4-48626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Smol, M. A1 - Adam, Christian T1 - Towards circular economy for phosphorus in Poland N2 - In the transition to the Circular Economy (CE) model, where the added value of products is kept as long as possible and waste is eliminated, the sustainable management of raw materials plays a key role. In above CE model, especial attention is paid to CRMs which are economically and strategically important for the European economy, but have a high-risk associated with their supply. One of the most important element which can not be replaced and is an essential element for human nutrition, yet limited resource is phosphorus (P). An importance of issues related to sustainable P management results from EU legislation, which indicated P as a Critical Raw Material (CRM). The sustainable management of P-resources is especially important for the Baltic region. A consequence of waterborne loads passing into the sea, mainly as wastewater with a high P content is the eutrophication of the Baltic Sea environment. Due to the largest inputs of P (37%) into the Baltic Sea originate from Poland, the development of sustainable solutions aimed at more rational P management for this country is externally important. T2 - International Phosphorus Workshop 9 CY - Zurich, Switzerland DA - 08.07.2019 KW - Phosphorus recovery KW - Circular economy PY - 2019 AN - OPUS4-48614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Del Mastro, G. A1 - Hammerstaedt, J. A1 - Mocella, V. A1 - Rabin, Ira T1 - XRF ink analysis of selected fragments from the Herculaneum collection N2 - Hundreds of papyrus rolls, carbonized during the 79CE eruption of Mount Vesuvius, were discovered in 1754 at Herculaneum. Sophisticated mechanical methods for unrolling the best-preserved scrolls have been applied, with varying success. However, such processes have been abandoned, to prevent risk from irremediable damage or loss and to preserve the integrity of the extremely fragile rolls. Following the development of X-ray based non-invasive techniques, attempts to virtually unroll the scrolls were made. The most common ink in Antiquity was carbon-based, and the main element of carbonized papyrus is carbon, making these investigations difficult. However, some attempts with synchrotron X-ray phase-contrast tomography (XPCT) were successful. Recently, the identification of antique inks containing metals raised hope that if some of the inks contain metal the rolls can be virtually unrolled using conventional CT- technique. We are presenting here the first results of a preliminary analysis, which aimed at identifying scrolls whose ink contains metals. T2 - Konferenz: 29th International Congress of Papyrology CY - Lecce, Italy DA - 28.07.2019 KW - Herculaneum KW - Papyrus KW - Tomography KW - XRF KW - Ink PY - 2019 AN - OPUS4-48615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Smol, M. A1 - Adam, Christian T1 - Possibility of recovering phosphorus from sewage sludge ash (SSA) in Poland N2 - Due to the vital importance of phosphorus (P) and its increasing scarcity as a natural resource, phosphorus recovery has recently gained significant scientific and technical interest. An interesting sources of phosphorus are sewage sludge (SS) and sewage sludge ash (SSA) due to the major part of the phosphate from P rich wastewater is transferred to the sludge (approx. 90%). Despite the fact that the raw materials base is large (PURE report indicates that in 2020 the amount of sewage sludge generated in Poland will reach 180% of the dry matter of sewage sludge produced in 2010), at present recycling of phosphorus is not a commonly used practice in Poland. T2 - International Phosphorus Workshop 9 CY - Zurich, Switzerland DA - 08.07.2019 KW - Sewage sludge ash KW - Phosphorus recovery PY - 2019 AN - OPUS4-48616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kunte, Hans-Jörg T1 - Effect of Ectoine on DNA: Mechanisms of Interaction and Protection N2 - The compatible solute ectoine is a versatile protectant synthesized by many prokaryotes. It is used as an osmolyte helping microorganisms to maintain an osmotic equilibrium. In addition, ectoine acts as a stabilizer and protects proteins, membranes and whole cells against detrimental effects such as freezing and thawing, drying and high temperatures. Its protective effect is explained by the preferential exclusion model, which postulates that ectoine does not directly interact with biomolecules but is excluded from their surface. Interestingly, details on the interaction of ectoine with DNA are still unknown. Therefore, we studied the influence of ectoine on DNA and the mechanisms by which ectoine protects DNA against ionizing radiation. To emulate biological conditions, we used a sample holder comprising a silicon chip with a Si3N4 membrane, which allows for electron irradiation of DNA in aqueous solution. Analysis by atomic force microscopy revealed that without ectoine, DNA was damaged by irradiation with a dose of 1,7 +/-0,3 Gy. With ectoine, DNA remained undamaged, even after irradiation with 15 Gy. Simulations with dsDNA and ectoine in water revealed a preferential binding of the zwitterionic ectoine to the negatively charged DNA. According to the simulations, binding of ectoine will destabilize dsDNA. Destabilizing is probably caused by the transition of B-DNA to A-DNA and will reduce the DNA melting temperature, which was experimentally proven. The preferential binding provides a stable ectoine shell around DNA, which allows ectoine to reduce OH-radicals and electrons near the DNA and thereby mitigating the damaging effect of ionizing radiation. T2 - Halophiles 2019 CY - Cluj-Napoca, Romania DA - 24.06.2019 KW - Ectoine KW - Ionizing radiation KW - Preferential binding PY - 2019 AN - OPUS4-48618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -