TY - JOUR A1 - Uhlig, S. A1 - Colson, B. A1 - Schoknecht, Ute T1 - A mathematical approach for the analysis of data obtained from the monitoring of biocides leached from treated materials exposed to outdoor conditions N2 - Leaching processes are responsible for the release of biocides from treated materials into the environment. Adequate modeling of emission processes is required in order to predict emission values in the framework of the risk assessment of biocidal products intended for long-term service life. Regression approaches have been applied to data obtained from the long-term monitoring of biocide emissions in experiments involving semi-field conditions. Due to the complex interaction of different underlying mechanisms such as water and biocide diffusion and desorption, however, these attempts have proven to be of limited usefulness e at least, for the available biocide emission data. It seems that the behavior of the biocide emission curve depends to a considerable extent on whichever underlying mechanism is slowest at a given point in time, thus limiting the amount of biocide available for release. Building on results obtained in the past few years, the authors propose a criterion for determining which mechanism controls the leaching process at a given point in time based on the slope of the log-log emission curve. In addition, a first-order approximation of this slope value is presented which displays advantages both in terms of computability and interpretability. Finally, an algorithm for the determination of breakpoints in the slope of the log-log emission curve is presented for the demarcation of phases within which one mechanism acts as a limiting factor. KW - Biocides KW - Leaching KW - Weathering KW - Mathematical analysis PY - 2019 DO - https://doi.org/10.1016/j.chemosphere.2019.04.102 SN - 0045-6535 SN - 1879-1298 VL - 228 SP - 271 EP - 277 PB - Elsevier AN - OPUS4-47886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Bresch, Harald A1 - Kipphardt, Heinrich A1 - Resch-Genger, Ute A1 - Koch, Matthias A1 - Rosner, M. T1 - Trends in selected fields of reference material production N2 - For more than 110 years, BAM has been producing reference materials for a wide range of application fields. With the development of new analytical methods and new applications as well as continuously emerging more stringent requirements of laboratory accreditation with regard to quality control and metrological traceability, the demand and requirements for reference materials are increasing. This trend article gives an overview of general developments in the field of reference materials as well as developments in selected fields of application in which BAM is active. This includes inorganic and metal analysis, gas analysis, food and consumer products, and geological samples. In addition to these more traditional fields of application, developments in the areas of optical spectroscopy, particulary fluorescence methods, and nanomaterials are considered. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Reference material KW - ISO REMCO KW - Gas analysis KW - Food KW - Nanomaterials KW - Fluorescence PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548407 DO - https://doi.org/10.1007/s00216-022-03996-7 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4281 EP - 4289 PB - Springer CY - Berlin AN - OPUS4-54840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Singh, Amit Kumar A1 - Mishra, Biswajit A1 - Sinha, Om Prakash T1 - Reduction Kinetics of Fluxed Iron Ore Pellets Made of Coarse Iron Ore Particles N2 - The present work demonstrates a sustainable approach of using relatively coarser iron ore particles for ironmaking. The motivation is to reduce the energy consumption in the milling of the iron ore by utilizing coarser iron ore particles (+0.05 mm) and to select a suitable binder for improving pellet properties. Iron ore fines in the range of 0.05–0.25 mm was selected and classified into three size ranges. Fluxed iron ore pellets were prepared using lime as a binder for the basicity of 0, 1, and 2. Reduction of these pellets with a packed bed of coal fines was performed in the temperature range of 900–1200 °C for a duration of 30–120 min. The direct reduction kinetics of the iron ore pellets were studied by employing diffusion and chemical reaction control models to the experimental data. The results show that pellets made with coarser iron ore particles have improved reduction behavior and kinetics. The reduction reaction is found to be a mixed control. The activation energy for the reduction reaction varies from 44.3 to 74.76 kJ mol−1 as iron ore particle size decreases from 0.25 to 0.05 mm and basicity increases from 0 to 2. KW - Materials Chemistry KW - Metals and Alloys KW - Process Metallurgy KW - Iron making PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598326 DO - https://doi.org/10.1002/srin.202300669 SN - 1611-3683 IS - 2300669 SP - 1 EP - 9 PB - Wiley VHC-Verlag AN - OPUS4-59832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwibbert, Karin A1 - Richter, Anja M. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Laser-Textured Surfaces: A Way to Control Biofilm Formation? N2 - Bacterial biofilms pose serious problems in medical and industrial settings. One of the major societal challenges lies in the increasing resistance of bacteria against biocides used in antimicrobial treatments, e.g., via overabundant use in medicine, industry, and agriculture or cleaning and disinfection in private households. Hence, new efficient bacteria-repellent strategies avoiding the use of biocides are strongly desired. One promising route to achieve bacteria-repellent surfaces lies in the contactless and aseptic large-area laser-processing of technical surfaces. Tailored surface textures, enabled by different laser-processing strategies that result in topographic scales ranging from nanometers to micrometers may provide a solution to this challenge. This article presents a current state-of-the-art review of laser-surface subtractive texturing approaches for controlling the biofilm formation for different bacterial strains and in different environments. Based on specific properties of bacteria and laser-processed surfaces, the challenges of anti-microbial surface designs are discussed, and future directions will be outlined. KW - Antibacterial surfaces KW - Biofilms KW - Laser processing KW - Laser-induced periodic surface structures (LIPSS) KW - Microbial adhesions PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588260 DO - https://doi.org/10.1002/lpor.202300753 SN - 1863-8899 SP - 1 EP - 41 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stohl, Leonie A1 - Manninger, Tanja A1 - von Werder, Julia A1 - Dehn, F. A1 - Gorbushina, Anna A1 - Meng, Birgit T1 - Bioreceptivity of concrete - A review N2 - Materials that support natural biodiversity on their surfaces can compensate for human activities that have a negative impact on nature and thus contribute to a carbon-neutral and nature-positive world. Specifically designing bioreceptive materials which favor the growth of biofilms on their surface is an approach complementing conventional, macroscopic green façades. But what exactly characterizes a bioreceptive substrate and how do biofilm and substrate interact? How and why does a spontaneous colonization and the formation of biofilms take place? What are biofilms and how can they be established in a laboratory setting? How can this existing knowledge be transferred to the artificial stone concrete so that this material can be tuned to increase (or decrease) its bioreceptivity? This review paper aims at summarizing the existing state of knowledge on bioreceptive concrete and pointing out inconsistencies and contradictions which can only be removed by more interdisciplinary research in the field. KW - Bioreceptivity KW - Biofilm KW - Green facades KW - Developing building materials KW - Surface interactions KW - Concrete PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581685 DO - https://doi.org/10.1016/j.jobe.2023.107201 SN - 2352-7102 VL - 76 SP - 1 EP - 17 PB - Elsevier AN - OPUS4-58168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Srivastava, Priyanka A1 - Tavernaro, Isabella A1 - Scholtz, Lena A1 - Genger, C. A1 - Welker, P. A1 - Schreiber, Frank A1 - Meyer, Klas A1 - Resch-Genger, Ute T1 - Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies N2 - Ratiometric green–red fluorescent nanosensors for fluorometrically monitoring pH in the acidic range were designed from 80 nm-sized polystyrene (PS) and silica (SiO2) nanoparticles (NPs), red emissive reference dyes, and a green emissive naphthalimide pH probe, analytically and spectroscopically characterized, and compared regarding their sensing performance in aqueous dispersion and in cellular uptake studies. Preparation of these optical probes, which are excitable by 405 nm laser or LED light sources, involved the encapsulation of the pH-inert red-fuorescent dye Nile Red (NR) in the core of self-made carboxylated PSNPs by a simple swelling procedure and the fabrication of rhodamine B (RhB)-stained SiO2-NPs from a silane derivative of pH-insensitive RhB. Subsequently, the custom-made naphthalimide pH probe, that utilizes a protonation-controlled photoinduced electron transfer process, was covalently attached to the carboxylic acid groups at the surface of both types of NPs. Fluorescence microscopy studies with the molecular and nanoscale optical probes and A549 lung cancer cells confirmed the cellular uptake of all probes and their penetration into acidic cell compartments, i.e., the lysosomes, indicated by the switching ON of the green naphthalimide fluorescence. This underlines their suitability for intracellular pH sensing, with the SiO2-based nanosensor revealing the best performance regarding uptake speed and stability. KW - Sensors KW - Silica and polystyrene nanoparticles KW - pH probe KW - Fluorescence spectroscopy KW - Cell studies KW - Dye KW - Particle synthesis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569198 DO - https://doi.org/10.1038/s41598-023-28203-0 SN - 2045-2322 VL - 13 IS - 1 SP - 1321 EP - 1336 PB - Nature CY - London AN - OPUS4-56919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Matthias A1 - Horn, Wolfgang A1 - Juritsch, Elevtheria A1 - Klinge, A. A1 - Radeljic, L. A1 - Jann, Oliver T1 - Natural building materials for interior fitting and refurbishment - What about indoor emissions? N2 - Indoor air quality can be adversely affected by emissions from building materials, consequently having a negative impact on human health and well-being. In this study, more than 30 natural building materials (earth dry boards and plasters, bio-based insulation materials, and boards made of wood, flax, reed, straw, etc.) used for interior works were investigated as to their emissions of (semi-) volatile organic compounds ((S)VOC), formaldehyde, and radon. The study focused on the emissions from complete wall build-ups as they can be used for internal Partition walls and the internal insulation of external walls. Test chambers were designed, allowing the compounds to release only from the surface of the material facing indoors under testing Parameters that were chosen to simulate model room conditions. The emission test results were evaluated using the AgBB evaluation scheme, a procedure for the health-related evaluation of construction products and currently applied for the approval of specific groups of building materials in Germany. Seventeen out of 19 sample build-ups tested in this study would have passed this scheme since they generally proved to be low-emitting and although the combined emissions of multiple materials were tested, 50% of the measurements could be terminated before half of the total testing time. KW - Bio-based insulation KW - Earthen building materials KW - Volatile organic compounds KW - Semivolatile organic compounds KW - Radon PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519634 DO - https://doi.org/10.3390/ma14010234 VL - 14 IS - 1 (Special issue: Measurement of the environmental impact of materials) SP - 234-1 EP - 234-14 PB - MDPI CY - Basel AN - OPUS4-51963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liaskos, C. A1 - Rhoderick, G. A1 - Hodges, J. A1 - Possolo, A. A1 - Wilke, Olaf T1 - Pilot comparison CCQM-P177 - monoterpenes in nitrogen at 2.5 nmol/mol - final report N2 - Growing awareness of the impact of monoterpenes on climate, atmospheric chemistry, and indoor air quality has necessitated the development of measurement standards to globally monitor and control their emissions. For National Metrology Institutes to develop such standards, it is essential that they demonstrate measurement equivalence for assigned values at the highest levels of accuracy. This report describes the results of a pilot comparison for 4 key monoterpene species: α-pinene, 3-carene, R-limonene and 1,8-cineole, at a nominal amount-of-substance fraction of 2.5 nmol mol-1. The objective of this comparison is to evaluate participant capabilities to measure trace-level monoterpenes using their own calibration techniques. KW - Pilot comparison KW - CCQM KW - Monoterpene KW - Accuracy PY - 2020 DO - https://doi.org/10.1088/0026-1394/57/1A/08018 SN - 0026-1394 SN - 1681-7575 VL - 57 IS - 1A SP - 08018-1 EP - 08018-21 PB - IOP Science AN - OPUS4-51111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Even, Morgane A1 - Hutzler, C. A1 - Wilke, Olaf A1 - Luch, A. T1 - Emissions of volatile organic compounds from polymer-based consumer products: comparison of three emission chamber sizes N2 - The ISO 16000 standard series provide guidelines for emission measurements of volatile organic compounds (VOCs) from building materials. However, polymer-based consumer products such as toys may also release harmful substances into indoor air. In such cases, the existing standard procedures are unsuitable for official control laboratories due to high costs for large emission testing chambers. This paper aims at developing and comparing alternative and more competitive methods for the emission testing of consumer products. The influence of the emission chamber size was investigated as smaller chambers are more suited to the common size of consumer products and may help to reduce the costs of testing. Comparison of the performance of a 203 l emission test chamber with two smaller chambers with the capacity of 24 l and 44 ml, respectively, was carried out by using a polyurethane reference material spiked with 14 VOCs during the course of 28 days. The area-specific emission rates obtained in the small chambers were always similar to those of the 203 l reference chamber after a few hours. This implies that smaller chambers can provide at least useful numbers on the extent of polymer-based consumer product emissions into indoor air, thereby supporting meaningful exposure assessments. KW - Comparison KW - Consumer products KW - Emission chamber KW - Reference material KW - Volatile organic compounds PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-493697 DO - https://doi.org/10.1111/ina.12605 VL - 30 IS - 1 SP - 40 EP - 48 PB - Wiley VCH-Verlag AN - OPUS4-49369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steger, S. A1 - Horn, Wolfgang A1 - Eggert, G. A1 - Krekel, C. T1 - Are cellulose ethers safe for the conservation of artwork? New insights in their VOC activity by means of Oddy testing N2 - Cellulose ethers, like methyl cellulose (MC) or hydroxypropyl cellulose (HPC), are widely used in conservation. They also occur as additives and rheology modifiers in various products like dispersions or gels. Do such products release harmful volatile organic compounds (VOC) during their accelerated aging? A mass testing series utilizing the Oddy test of 60 commercial cellulose ethers ranks the products in safe for permanent use (P, no corrosion), only for temporary use (T, slight corrosion), and unsuitable at all (F, heavy corrosion). Results show that 55% of the products passed the test whereas 33% are for temporary use as slight corrosion occurred on at least one metal coupon and only 11% failed the Oddy test. Raman measurements of the corrosion products identified oxides like massicot, litharge, cuprite, and tenorite among carbonates (hydrocerussite, plumbonacrite), and acetates like basic lead acetate, lead acetate trihydrate as well as lead formate as main phases. For example, commercial, industrial Klucel® G (HPC) scored a T rating through slight corrosion on the lead coupon. Basic lead acetate among other phases indicates the presence of acetic acid. Additional measurements of the sample with thermal desorption GC–MS utilizing the BEMMA scheme confirm the high acetic acid outgassing and reveal the presence of a small amount of formaldehyde. KW - Cellulose ether KW - Corrosion KW - Oddy test KW - VOC KW - BEMMA PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547591 DO - https://doi.org/10.1186/s40494-022-00688-4 SN - 2050-7445 VL - 10 IS - 1 SP - 1 EP - 12 PB - Springer Open AN - OPUS4-54759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -