TY - JOUR A1 - Tan, K. H. A1 - Sattari, S. A1 - Donskyi, Ievgen A1 - Cuellar-Camacho, J. L. A1 - Cheng, C. A1 - Schwibbert, Karin A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Gorbushina, Anna A1 - Adeli, M. A1 - Haag, R. T1 - Functionalized 2D nanomaterials with switchable binding to investigate graphene–bacteria interactions N2 - Graphene and its derivatives have recently attracted much attention for sensing and deactivating pathogens. However, the mechanism of multivalent interactions at the graphene–pathogen interface is not fully understood. Since different physicochemical parameters of graphene play a role at this interface, control over graphene’s structure is necessary to study the mechanism of these interactions. In this work, different graphene derivatives and also zwitterionic graphene nanomaterials (ZGNMs) were synthesized with defined exposure, in terms of polymer coverage and functionality, and isoelectric points. Then, the switchable interactions of these nanomaterials with E. coli and Bacillus cereus were investigated to study the validity of the generally proposed “trapping” and “nano-knives” mechanisms for inactivating bacteria by graphene derivatives. It was found that the antibacterial activity of graphene derivatives strongly depends on the accessible area, i.e. edges and basal plane of sheets and tightness of their agglomerations. Our data clearly confirm the authenticity of “trapping” and “nano-knives” mechanisms for the antibacterial activity of graphene sheets. KW - XPS KW - Graphene KW - Graphene–bacteria interaction PY - 2018 DO - https://doi.org/10.1039/c8nr01347k SN - 2040-3364 SN - 2040-3372 VL - 10 IS - 20 SP - 9525 EP - 9537 PB - RSC CY - London AN - OPUS4-45084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - He, Shulin A1 - Johnston, P. R. A1 - Kuropka, B. A1 - Lokatis, S. A1 - Weise, C. A1 - Plarre, Rüdiger A1 - Kunte, Hans-Jörg A1 - McMahon, Dino Peter T1 - Termite soldiers contribute to social immunity by synthesizing potent oral secretions N2 - The importance of soldiers to termite Society defence has long been recognized, but the contribution of soldiers to other societal functions, such as colony immunity, is less well understood. We explore this issue by examining the role of soldiers in protecting nestmates against pathogen infection. Even though they are unable to engage in grooming behaviour, we find that the presence of soldiers of the Darwin termite, Mastotermes darwiniensis, significantly improves the survival of nestmates following entomopathogenic infection. We also show that the copious exocrine oral secretions produced by Darwin termite soldiers contain a high concentration of Proteins involved in digestion, chemical biosynthesis, and immunity. The oral secretions produced by soldiers are sufficient to protect nestmates against infection, and they have potent inhibitory activity against a broad spectrum of microbes. Our findings support the view that soldiers may play an important role in colony immunity, and broaden our understanding of the possible function of soldiers during the origin of soldier-first societies. KW - External KW - Social KW - Immunity KW - Soldier KW - Antimicrobial KW - Proteome PY - 2018 DO - https://doi.org/10.1111/imb.12499 SN - 1365-2583 SN - 0962-1075 VL - 27 IS - 5 SP - 564 EP - 576 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-45726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Hermann, P. A1 - Kästner, B. A1 - Adamczyk, Burkart A1 - Hoehl, A. A1 - Ulm, G. A1 - Adam, Christian T1 - Air and chlorine gas corrosion of different silicon carbides analyzed by nano-Fourier-transform infrared (nano-FTIR) spectroscopy N2 - The present study shows the potential of high-resolution imaging and nano-Fourier-transform infrared (nano-FTIR) spectroscopy for corrosion science. The protective oxidation layers of different chlorine-gas treated silicon carbides (SiCs) were characterized with these techniques. A nitrified SiC showed the highest resistant strength against chlorine corrosion at 1000 °C compared to the other SiCs. Nano-FTIR spectroscopy with a lateral resolution below 40 nm detected differences in the crystallinity of the bulk-SiC and in the transitional region to the protective layer. Furthermore, high-resolution imaging provides deep insight in the interfacial layer between bulk-SiC and the protective oxidation layer on sub-micrometer scale. KW - Nano-Fourier-transform infrared spectroscopy KW - Scattering-type scanning near-field optical microscopy (s-SNOM) KW - Synchrotron radiation KW - Corrosion KW - Silicon carbide KW - Chlorine PY - 2018 DO - https://doi.org/10.1016/j.corsci.2017.12.002 SN - 0010-938X VL - 131 SP - 324 EP - 329 PB - Elsevier AN - OPUS4-43648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoyer, C. A1 - Pfütze, C. A1 - Plarre, Rüdiger A1 - Trommler, U. A1 - Steinbach, S. A1 - Klutzny, Kerstin A1 - Holzer, F. A1 - Rabe, C. A1 - Höhlig, B. A1 - Schmidt, S. A1 - Roland, U. T1 - Chemical-free pest control by dielectric heating with radio waves and microwaves: Thermal effects N2 - Thermal pest control with hot air is widely accepted as an alternative to chemical methods. However, it requires relatively long treatment times owing to the low thermal conductivity of wood. Direct dielectric heating that applies radio waves or microwaves has the advantage of more homogeneous heating. However, Sound experimental data on this technique are currently rare. Therefore, the thermal treatment of wood-destroying insects with radio waves and microwaves was studied with two model pests, Anobium punctatum and Hylotrupes bajulus, and with Tenebrio molitor as a reference. The secure elimination of pests was achieved, and the corresponding treatment time was in the range of a few minutes. Temperature profiles were more homogeneous when applying radio waves. KW - Dielectric heating KW - Microwaves KW - Pest control KW - Radio waves KW - Wood protection PY - 2018 DO - https://doi.org/10.1002/ceat.201600712 SN - 1521-4125 SN - 0930-7516 VL - 41 IS - 1 SP - 108 EP - 115 PB - Wiley-VCH CY - Weinheim AN - OPUS4-43527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Rivard, C. A1 - Wilken, V. A1 - Muskolus, A. A1 - Adam, Christian T1 - Performance of secondary P-fertilizers in pot experiments analyzed by phosphorus X-ray absorption near-edge structure (XANES) spectroscopy N2 - A pot experiment was carried out with maize to determine the phosphorus (P) plant-availability of different secondary P-fertilizers derived from wastewater. We analyzed the respective soils by P K-edge X-ray absorption near-edge structure (XANES) spectroscopy to determine the P chemical forms that were present and determine the transformation processes. Macro- and micro-XANES spectroscopy were used to determine the chemical state of the overall soil P and identify P compounds in P-rich spots. Mainly organic P and/or P adsorbed on organic matter or other substrates were detected in unfertilized and fertilized soils. In addition, there were indications for the formation of ammonium phosphates in some fertilized soils. However, this effect was not seen in the maize yield of all P-fertilizers. The observed reactions between phosphate from secondary P-fertilizers and cofertilized nitrogen compounds should be further investigated. Formation of highly plant-available compounds such as ammonium phosphates could make secondary P-fertilizers more competitive to commercial phosphate rock-based fertilizers with positive effects on resources conservation. KW - Phosphorus KW - Pot experiments KW - Secondary P-fertilizer KW - Sewage sludge ash KW - Soil KW - X-ray absorption near-edge structure (XANES) spectroscopy PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-433782 DO - https://doi.org/10.1007/s13280-017-0973-z SN - 0044-7447 VL - 47 IS - 1 SP - 62 EP - 72 PB - Springer AN - OPUS4-43378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ibrahim, B. A1 - McMahon, Dino Peter A1 - Hufsky, F. A1 - Beer, M. A1 - Ding, L. A1 - Le Mercier, P. A1 - Palmarini, M. A1 - Thiel, V. A1 - Marz, M. T1 - A new era of virus bioinformatics N2 - Despite the recognized excellence of virology and bioinformatics, these two communities have interacted surprisingly sporadically, aside from some pioneering work on HIV-1 and influenza. Bringing together the Expertise of bioinformaticians and virologists is crucial, since very specific but fundamental computational approaches are required for virus research, particularly in an era of big data. Collaboration between virologists and bioinformaticians is necessary to improve existing analytical tools, cloud-based systems, computational resources, data sharing approaches, new diagnostic tools, and bioinformatic training. Here, we highlight current progress and discuss potential avenues for future developments in this promising era of virus bioinformatics. We end by presenting an overview of current technologies, and by outlining some of the Major challenges and Advantages that bioinformatics will bring to the field of virology. KW - Bioinformatics virology viruses software PY - 2018 DO - https://doi.org/10.1016/j.virusres.2018.05.009 SN - 0168-1702 SN - 1872-7492 VL - 251 SP - 86 EP - 90 PB - Elsevier CY - Amsterdam AN - OPUS4-45880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ibrahim, B. A1 - Arkhipova, K. A1 - Andeweg, A.C. A1 - Posada-Céspedes, S. A1 - Enault, F. A1 - Gruber, A. A1 - Koonin, E.V. A1 - Kupczok, A. A1 - Lemey, P. A1 - McHardy, A.C. A1 - McMahon, Dino Peter A1 - Pickett, B.E. A1 - Robertson, D.L. A1 - Scheuermann, R.H. A1 - Zhernakova, A. A1 - Zwart, M.P. A1 - Schönhuth, A. A1 - Dutilh, B.E. A1 - Marz, M. T1 - Bioinformatics meets virology: The European virus bioinformatics center's second annual meeting N2 - The Second Annual Meeting of the European Virus Bioinformatics Center (EVBC), held in Utrecht, Netherlands, focused on computational approaches in virology, with topics including (but not limited to) virus discovery, diagnostics, (meta-)genomics, modeling, epidemiology, molecular structure, evolution, and viral ecology. The goals of the Second Annual Meeting were threefold: (i) to bring together virologists and bioinformaticians from across the academic, industrial, professional, and training sectors to share best practice; (ii) to provide a meaningful and interactive scientific environment to promote discussion and collaboration between students, postdoctoral fellows, and both new and established investigators; (iii) to inspire and suggest new research directions and questions. Approximately 120 researchers from around the world attended the Second Annual Meeting of the EVBC this year, including 15 renowned international speakers. This report presents an overview of new developments and novel research findings that emerged during the meeting. KW - Bioinformatics KW - Software KW - Virology KW - Viruses PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458814 DO - https://doi.org/10.3390/v10050256 SN - 1999-4915 VL - 10 IS - 5 SP - 256, 1 EP - 19 PB - MDPI AN - OPUS4-45881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stock, S. C. A1 - Köster, M. A1 - Dippold, M. A. A1 - Nájera, F. A1 - Matus, F. A1 - Merino, C. A1 - Boy, J. A1 - Spielvogel, S. A1 - Gorbushina, Anna A1 - Kuzyakov, Y. T1 - Environmental drivers and stoichiometric constraints on enzyme activities in soils from rhizosphere to continental scale N2 - Microbial activity and functioning in soils are strongly limited by carbon (C) availability, of which a great proportion is released by living roots. Rhizodeposition and especially root exudates stimulate microbial activity and growth, and may shift the stoichiometric balance between C, N, and P. Thereby, exudates heighten microbial nutrient demand and acquisition of N and P from organic matter, leading to an increase in enzyme production. Aim of this study was to determine environmental controls of extracellular enzyme production, and hence on potential enzyme activities (Vmax) and substrate affinities (Km). To determine the controlling factors, we worked on four spatial scales from the microscale (i.e. rhizosphere) through the mesoscale (i.e. soil depth) and landscape scale (relief positions), and finally to the continental scale (1200 km transect within the Coastal Cordillera of Chile). Kinetics of seven hydrolyzing enzymes of the C, N, and P cycles (cellobiohydrolase, β‑glucosidase, β‑xylosidase, β‑N‑acetylglucosaminidase, leucine‑aminopeptidase, tyrosine‑aminopeptidase, and acid phosphatase) were related to soil texture, C and N contents, pH, and soil moisture via redundancy analysis (RDA). Potential activities of C, N, and P acquiring enzymes increased up to 7-times on the continental scale with rising humidity of sites and C and N contents, while substrate affinities simultaneously declined. On the landscape scale, neither Vmax nor Km of any enzyme differed between north and south slopes. From top- to subsoil (down to 120 cm depth) potential activities decreased (strongest of aminopeptidases under humid temperate conditions with up to 90%). Substrate affinities, however, increased with soil depth only for N and P acquiring enzymes. Affinities of cellobiohydrolase and β‑xylosidase, on the contrary, were 1.5- to 3-times higher in top- than in subsoil. Potential activities of N and P acquiring enzymes and β‑glucosidase increased form bulk to roots. Simultaneously, substrate affinities of N and P acquiring enzymes declined, whereas affinities of β‑glucosidase increased. These trends of activities and affinities in the rhizosphere were significant only for acid phosphatase. The RDA displayed a strong relation of potential activities of C and P acquiring enzymes and β‑N‑acetylglucosaminidase to C and N contents in soil as well as to the silt and clay contents. Aminopeptidase activity was mainly dependent on soil moisture and pH. We conclude that substrate availability for microorganisms mainly determined enzyme activity patterns on the continental scale by the humidity gradient. Patterns on the meso- and microscale are primarily controlled by nutrient limitation, which is induced by a shift of the stoichiometric balance due to input of easily available C by roots in the rhizosphere. KW - Extracellular enzymes KW - Stoichiometric homeostasis KW - Rhizosphere effect KW - Nutrient acquisition KW - Multi-scale study PY - 2018 DO - https://doi.org/10.1016/j.geoderma.2018.10.030 SN - 0016-7061 SN - 1872-6259 VL - 2019 IS - 337 SP - 973 EP - 982 PB - Elsevier B.V. AN - OPUS4-46829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pokharel, R. A1 - Gerrits, Ruben A1 - Schuessler, J. A. A1 - Frings, P. J. A1 - Sobotka, R. A1 - Gorbushina, Anna A1 - von Blanckenburg, F. T1 - Magnesium stable isotope fractionation on a cellular level explored by cyanobacteria and black fungi with implications for higher plants N2 - In a controlled growth experiment we found that the cyanobacterium Nostoc punctiforme has a bulk cell 26Mg/24Mg ratio (expressed as δ26Mg) that is −0.27‰ lower than the growth solution at a pH of ca. 5.9. This contrasts with a recently published δ26Mg value that was 0.65‰ higher than growth solution for the black fungus Knufia petricola at similar laboratory conditions, interpreted to reflect loss of 24Mg during cell growth. By a mass balance model constrained by δ26Mg in chlorophyll extract we inferred the δ26 Mg value of the main Mg compartments in a cyanobacteria cell: free cytosolic Mg (−2.64‰), chlorophyll (1.85‰), and the nonchlorophyll-bonded Mg compartments like ATP and ribosomes (−0.64‰). The lower δ26Mg found in Nostoc punctiforme would thus result from the absence of significant Mg efflux during cell growth in combination with either (a) discrimination against 26Mg during uptake by desolvation of Mg or transport across protein channels or (b) discrimination against 24Mg in the membrane transporter during efflux. The model predicts the preferential incorporation of 26Mg in cells and plant organs low in Mg and the absence of isotope fractionation in those high in Mg, corroborated by a compilation of Mg isotope ratios from fungi, bacteria, and higher plants. KW - Cyanobacteria KW - Black fungi KW - Nostoc punctiforme KW - Knufia petricola KW - Magnesium PY - 2018 DO - https://doi.org/10.1021/acs.est.8b02238 SN - 1520-5851 SN - 0013-936X VL - 52 IS - 21 SP - 12216 EP - 12224 PB - ACS Publications AN - OPUS4-46832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Davis, Hannah A1 - Meconcelli, Stefania A1 - Radek, R. A1 - McMahon, Dino Peter T1 - Termites shape their collective behavioural response based on stage of infection N2 - Social insects employ a range of behaviours to protect their colonies against disease, but little is known about how such collective behaviours are orchestrated. This is especially true for the social Blattodea (termites). We developed an experimental approach that allowed us to explore how the social response to disease is co-ordinated by multistep host-pathogen interactions. We infected the eastern subterranean termite Reticulitermes flavipes with the entomopathogenic fungus Metarhizium anisopliae, and then, at different stages of infection, reintroduced them to healthy nestmates and recorded behavioural responses. As expected, termites groomed pathogen-exposed individuals significantly more than controls; however, grooming was significantly elevated after fungal germination than before, demonstrating the importance of fungal status to hygienic behaviour. Significantly, we found that cannibalism became prevalent only after exposed termites became visibly ill, highlighting the importance of host condition as a cue for social hygienic behaviour. Our study reveals the presence of a coordinated social response to disease that depends on stage of infection. Specifically, we show how the host may play a key role in triggering its own sacrifice. Sacrificial self-flagging has been observed in other social insects: our results demonstrate that termites have independently evolved to both recognize and destructively respond to sickness. KW - Social KW - Immunity KW - Cannibalism KW - Entomopathogen PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-463239 DO - https://doi.org/10.1038/s41598-018-32721-7 SN - 2045-2322 VL - 8 SP - 14433, 1 EP - 10 PB - Nature CY - London AN - OPUS4-46323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -