TY - JOUR A1 - Alder-Rangel, A. A1 - Idnurm, A. A1 - Brand, A. A1 - Brown, A. A1 - Gorbushina, Anna A1 - Kelliher, C. A1 - Campos, C. A1 - Levin, D. A1 - Bell-Pedersen, D. A1 - Dadachova, E. A1 - Bauer, F. A1 - Gadd, G. A1 - Braus, G. A1 - Braga, G. A1 - Brancini, G. A1 - Walker, G. A1 - Druzhinina, I. A1 - Pocsi, I. A1 - Dijksterhuis, J. A1 - Aguirre, J. A1 - Hallsworth, J. A1 - Schumacher, Julia A1 - Ho Wong, K. A1 - Selbmann, L. A1 - Corrochano, L. A1 - Kupiec, M. A1 - Momany, M. A1 - Molin, M. A1 - Requena, N. A1 - Yarden, O. A1 - Cordero, R. A1 - Fischer, R. A1 - Pascon, R. A1 - Mancinelli, R. A1 - Emri, T. A1 - Basso, T. A1 - Rangel, D. T1 - The Third International Symposium on Fungal Stress - ISFUS JF - Fungal Biology N2 - Stress is a normal part of life for fungi, which can survive in environments considered inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, survive in, and transform the environment, even under severe stresses, many researchers are exploring the mechanisms that enable fungi to adapt to stress. The International Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the world who research fungal stress. This article discusses presentations given at the third ISFUS, held in Sao Jose dos Campos, Sao Paulo, Brazil in 2019, thereby summarizing the state-of-the-art knowledge on fungal stress, a field that includes microbiology, agriculture, ecology, biotechnology, medicine, and astrobiology. T2 - International Symposium on Fungal Stress (ISFUS) CY - Sao Jose dos Campos, Brazil DA - 20.05.2019 KW - Agricultural mycology KW - Fungal stress mechanisms and responses KW - Industrial mycology KW - Medical mycology PY - 2020 DO - https://doi.org/10.1016/j.funbio.2020.02.007 VL - 124 IS - 5 SP - 235 EP - 252 PB - Elsevier Ltd. AN - OPUS4-50953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Albarrán Martínez, M. J. A1 - Ghigo, Tea T1 - The practice of writing inside an Egyptian monastic settlement JF - Heritage Science N2 - Over the last few years, the Federal Institute for material research (BAM, Berlin) together with the Centre for the Study of Manuscript Cultures (CSMC, University of Hamburg) have initiated a systematic material investigation of black inks produced from Late Antiquity to the Middle Ages (ca. fourth century CE–fourteenth/fifteenth centuries CE), aimed primarily at extending and complementing findings from previous sporadic studies. Part of this systematic investigation has focused on Egyptian Coptic manuscripts, and the present preliminary study is one of its outputs. It centres on a corpus of 45 Coptic manuscripts—43 papyri and 2 ostraca—preserved at the Palau-Ribes and Roca-Puig collections in Barcelona. The manuscripts come from the Monastery of Apa Apollo at Bawit, one of the largest monastic settlements in Egypt between the Late Antiquity and the Early Islamic Period (sixth–eighth centuries CE). The composition of their black inks was investigated in situ using near-infrared reflectography (NIRR) and X-ray fluorescence (XRF). The analyses determined that the manuscripts were written using different types of ink: pure carbon ink; carbon ink containing iron; mixed inks containing carbon, polyphenols and metallic elements; and iron-gall ink. The variety of inks used for the documentary texts seems to reflect the articulate administrative system of the monastery of Bawit. This study reveals that, in contrast to the documents, written mostly with carbon-based inks, literary biblical texts were written with iron-gall ink. The frequent reuse of papyrus paper for certain categories of documents may suggest that carbon-based inks were used for ephemeral manuscripts, since they were easy to erase by abrasion. KW - Papyrus KW - Ink analysis KW - Coptic manuscripts KW - Bawit KW - Mixed ink KW - Near-infrared refectography KW - X-ray fuorescence PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528833 DO - https://doi.org/10.1186/s40494-021-00541-0 SN - 2050-7445 VL - 9 IS - 1 SP - 1 EP - 15 PB - Springer Open CY - Rome, Italy AN - OPUS4-52883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahlawat, A. A1 - Seeger, Stefan A1 - Gottschalk, Martin A1 - Tuch, T. A1 - Wiedensohler, A. T1 - Observation of systematic deviations between Faraday cup aerosol electrometers for varying particle sizes and flow rates - results of the AEROMET FCAE workshop JF - Metrologia N2 - Condensation particle counters (CPCs) are widely used for the measurement of aerosol particle number concentrations in the size range from approximately 3 nm to 3 μm. For an SI-traceable calibration of the size-dependent counting efficiency, which is advisable on a regular basis and required in several applications, Faraday cup aerosol electrometers (FCAEs) are considered to be a suitable SI-traceable reference.While the volumetric aerosol inlet flowrate and the electrical current measurement in FCAEs can be related to respective SI references, inter-comparison exercises for FCAEs are still performed on a regular basis to establish reliable uncertainty budgets and to further investigate the influences of designs and operational parameters on comparability. This is strongly demanded in the international community of metrological institutes and aerosol calibration facilities around the world, which provide CPC calibrations. In the present study, the performance of FCAEs was investigated,using Ag test aerosol particles with a 30 nm particle diameter by varying the inlet flowrates from 0.5 l min−1 to 4 l min−1. From our experimental results, significant deviations were observed in FCAE currents at sample flowrates smaller than 1.5 l min−1. It is recommended that these discrepancies should be quantified before an FCAE is used for CPC calibration at low sample flowrates and small particle sizes in the sub-30 nm size range. KW - Faraday cup aerosol electrometer KW - CPC calibration KW - Inter-comparison KW - Aerosol measurement instruments PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531315 DO - https://doi.org/10.1088/1681-7575/ac0710 SN - 1681-7575 SN - 0026-1394 VL - 58 IS - 5 SP - 1 EP - 8 PB - Institute of Physics (IOP) CY - Bristol, UK AN - OPUS4-53131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adamczyk, Burkart A1 - Neuhold, S. A1 - Drissen, P. A1 - Algermissen, D. A1 - Presoly, P. A1 - Sedlazeck, K. P. A1 - Schenk, J. A1 - Raith, J. G. A1 - Pomberger, R. A1 - Vollprecht, D. T1 - Tailoring the FeO/SiO2 ratio in electric arc furnace slags to minimize the leaching of Vanadium and Chromium JF - Applied Sciences N2 - Based on recently published research on leaching control mechanisms in electric arc furnace (EAF) slags, it is assumed that a FeO/SiO2 ratio of around one leads to low leached V and Cr concentrations. This ratio influences the mineral phase composition of the slag toward higher amounts of spinel and a lower solubility of calcium silicate phases by suppressing the formation of magnesiowuestite and highly soluble calcium silicate phases. To evaluate this hypothesis, laboratory and scaled up tests in an EAF pilot plant were performed on slag samples characterized by elevated V and Cr leaching and a high FeO/SiO2 ratio. Prior to the melting experiments, the optimum FeO/SiO2 ratio was calculated via FactSageTM. In the melting experiments, the ratio was adjusted by adding quartz sand, which also decreased the basicity (CaO/SiO2) of the slag. As a reference, remelting experiments without quartz sand addition were conducted and additionally, the influence of the cooling rate of the slag was examined. The remelted (without quartz sand) and the remelted modified slags (with quartz sand) were analyzed chemically and mineralogically and the leaching behavior was investigated. The modification of the slags yielded a minimized release of V and Cr, supporting the hypothesis that the FeO/SiO2 ratio influences the mineralogy and the leaching behavior. KW - Electric arc furnace slags KW - FactSage calculations KW - EAF slags KW - Leaching control mechanisms KW - Melting experiments PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507748 DO - https://doi.org/10.3390/app10072549 VL - 10 IS - 7 SP - 2549 EP - 2565 AN - OPUS4-50774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abis, M. A1 - Bruno, M. A1 - Simon, Franz-Georg A1 - Grönholm, R. A1 - Hoppe, M. A1 - Kuchta, K. A1 - Fiore, S. T1 - A Novel Dry Treatment for Municipal Solid Waste Incineration Bottom Ash for the Reduction of Salts and Potential Toxic Elements JF - Materials N2 - The main obstacle to bottom ash (BA) being used as a recycling aggregate is the content of salts and potential toxic elements (PTEs), concentrated in a layer that coats BA particles. This work presents a dry treatment for the removal of salts and PTEs from BA particles. Two pilotscale abrasion units (with/without the removal of the fine particles) were fed with different BA samples. The performance of the abrasion tests was assessed through the analyses of particle size and moisture, and that of the column leaching tests at solid-to-liquid ratios between 0.3 and 4. The results were: the particle-size distribution of the treated materials was homogeneous (25 wt % had dimensions <6.3 mm) and their moisture halved, as well as the electrical conductivity of the leachates. A significant decrease was observed in the leachates of the treated BA for sulphates (44%), chlorides (26%), and PTEs (53% Cr, 60% Cu and 8% Mo). The statistical analysis revealed good correlations between chloride and sulphate concentrations in the leachates with Ba, Cu, Mo, and Sr, illustrating the consistent behavior of the major and minor components of the layer surrounding BA particles. In conclusion, the tested process could be considered as promising for the improvement of BA valorization. KW - Bottom ash KW - Dry treatment KW - Potential toxic elements KW - Salts PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527963 DO - https://doi.org/10.3390/ma14113133 SN - 1996-1944 VL - 14 IS - 11 SP - 3133 PB - MDPI CY - Basel AN - OPUS4-52796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abis, M. A1 - Bruno, M. A1 - Kuchta, K. A1 - Simon, Franz-Georg A1 - Grönholm, R. A1 - Hoppe, M. A1 - Fiore, S. T1 - Assessment of the Synergy between Recycling and Thermal Treatments in Municipal Solid Waste Management in Europe JF - Energies N2 - In 2018, the production of Municipal SolidWaste (MSW) in EU-28 reached 250.6 Mt, with the adoption of different management strategies, involving recycling (48 wt %), incineration and thermal valorization (29 wt %) and landfilling (23 wt %). This work was based on the analysis of the baseline situation of MSW management in EU-28 in 2018, considering its progress in 2008–2018, and discussed the possible improvement perspectives based on a framework involving incineration and recycling as the only possible alternatives, specifically evaluating the capability of already-existing incineration plants to fulfill the EU needs in the proposed framework. The results of the assessment showed two main crucial issues that could play a pivotal role in the achievement of Circular Economy action plan targets: the need to increase the recycling quotas for specific MSW fractions through the separate collection, and therefore the improvement of definite treatment process chains; the optimization of the recovery of secondary raw materials from incineration bottom ash, involving the Recycling of ferrous and nonferrous metals and the mineral fraction. Both issues need to find an extensive application across all member states to decrease the actual differences in the adoption of sustainable MSW management options. KW - Bottom ash KW - Circular economy KW - Waste treatment KW - Recycling PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520285 DO - https://doi.org/10.3390/en13236412 SN - 1996-1073 VL - 13 IS - 23 SP - 6412 EP - 6412 PB - MDPI CY - Basel AN - OPUS4-52028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -