TY - CONF A1 - Schoknecht, Ute T1 - The Impact of Weather Conditions on Biocides in Paints N2 - Aim. The European biocidal products regulation requires environmental risk assessments for biocidal products under service conditions. This is only possible, if processes that lead to biocide emissions into the environment are understood and can be reasonably predicted. Actual emissions due to leaching result from different processes that are affected by material properties and environmental conditions. Transformation of biocides can affect emissions considerably. Leaching and possible transformation of the film preservatives carbendazim, diuron, OIT and terbutryn in paints was observed under laboratory and field conditons in order to investigate the influence of different factors, e.g. water contact and radiation on biocide emissions. The paints contained either white titanium dioxide or a red iron oxide pigment to check whether pigments affect leaching processes. Methods. Test specimens of a water-based styrene acrylic dispersion paint on glass were exposed to UVA-radiation in a UV weathering device and/or exposed to water contact by immersion events on the basis of the European standard EN 16105. Plywood panels were coated and exposed to natural weather conditions in a semi-field experiment. Concentrations of biocides and transformation products were analysed in leachates from laboratory tests, runoff samples and remaining coatings. Results. The impact of weathering conditions on transformation processes differs for the investigated active substances. Water contact, radiation as well as pigments in the paints determine the pattern and amount of transformation products on coatings, leachates and runoff water. Observations from laboratory and field experiments were compared. It proved that results from laboratory tests support understanding of data from field experiments. Detailed knowledge on the fate of active substances under environmental conditions supports manufacturers to develop safe applications of film preservatives and authorities to evaluate its environmental impact. T2 - European Technical Coatings Congress 2022 CY - Kraków, Poland DA - 12.07.2022 KW - Paints KW - Biocides KW - Transformation KW - Emission PY - 2022 AN - OPUS4-55274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schoknecht, Ute A1 - Mathies, H. T1 - The Impact of Weather Conditions on Biocides in Paints JF - Materials N2 - Weather conditions affect biocides on exposed outer surfaces on constructions. Contact with water causes hydrolysis and leaching of substances. Ultraviolet radiation may induce photolysis. As a result, a mixture of biocidal active substances and transformation products can be emitted into the environment. In a semi-field study, leaching of the biocidal active substances terbutryn, diuron, octylisothiazolinone, carbendazim, and selected transformation products was observed for two paints containing either a white or a red pigment. Painted test panels were exposed to natural weathering for about 1.5 years. Runoff samples were analyzed during the course of the experiment. At the end of the study, residues of biocidal active substances and transformation products were determined in sections of the test panels. Emissions of substances were mainly observed during the first few months of the experiments. Increased emissions of transformation products were observed during periods of increased global radiation and subsequent periods with relatively high amounts of driving rain. Different patterns of transformation products were observed, especially for terbutryn, both for paints containing different pigments and in experiments that were started in different periods of the year, as well as during different periods of the experiments. KW - Substance release KW - Construction products KW - Biocides KW - Transformation KW - Weathering KW - Driving rain KW - Global radiation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560651 DO - https://doi.org/10.3390/ma15207368 VL - 15 IS - 20 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-56065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schoknecht, Ute A1 - Kalbe, Ute A1 - Heisterkamp, I. A1 - Kretzschmar, M. A1 - Gartiser, S. A1 - Happel, O. A1 - Ilvonen, O. T1 - Release of substances from joint grouts based on various binder types and their ecotoxic effects JF - Environmental Sciences Europe N2 - Background: The leaching of substances and the ecotoxic effects of eluates were studied for joint grouts that are based on various types of binders. Eight products, two of them containing either epoxy resin, polybutadiene or polyurethane binders, or modifed cement, were investigated using harmonized leaching tests for construction products in combination with ecotoxicity tests on algae, daphnia, luminescent bacteria, fish eggs and mutagenicity in accordance with CEN/TR 17105. In addition to basic parameters, such as pH, TOC, and inorganic components, organic substances in the eluates were analysed by gas and liquid chromatography in combination with mass spectrometry. Quantitative analyses in combination with ecotoxicity data on selected substances were used to deduce which substances cause the observed ecotoxic effects. Results: Different patterns of ecotoxic effects were observed in joint grouts with different binder types. The most ecotoxic effects were observed in epoxy resin-based products, followed by polybutadiene-based products. Fewer ecotoxic effects were observed in polyurethane-based products and modifed cements. Some of these showed no ecotoxicity. Some of the substances in the eluates were identified and related to ecotoxic effects. 4-Tert-butylphenol and amines probably contributed to the ecotoxic effects of at least one of the epoxy resin-based renders, whereas cobalt is assumed to contribute to the toxic effect on algae of one of the polybutadiene-based products. However, only some of the leached substances could be identifed, and only some of the ecotoxic effects can be explained by the available information on the composition of eluates and known ecotoxic profiles of the identified substances. Conclusions: Ecotoxicity tests on eluates from leaching tests indicate whether environmentally hazardous substances can be leached from construction products. Combined ecotoxicity tests and chemical analysis of eluates from EU-wide harmonized leaching tests for construction products can provide information on substances that cause these effects. This supports the identifcation and development of environmentally friendly construction products. This study confirmed that ecotoxicity tests in accordance with CEN/TR 17105 are a tool well-suited to support the implementation of the European Commission’s zero pollution vision for 2050 and to reduce pollution to levels no longer considered harmful to health and natural ecosystems. KW - Joint grouts KW - Leaching KW - Ecotoxixity PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562392 DO - https://doi.org/10.1186/s12302-022-00686-0 SN - 2190-4707 VL - 34 IS - 1 SP - 1 EP - 16 PB - Springer Nature CY - Berlin AN - OPUS4-56239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Franz-Georg T1 - Product testing and performance N2 - Geosynthetic materials are applied in measures for coastal protection. Weathering or any damage of constructions, as shown by a field study in Kaliningrad Oblast (Russia), could lead to the littering of the beach or the sea (marine littering) and the discharge of possibly harmful additives into the marine environment. The ageing behavior of a widely used geotextile made of polypropylene was studied by artificial accelerated ageing in water-filled autoclaves at temperatures of 30 to 80° C and pressures of 10 to 50 bar. Tensile strength tests were used to evaluate the progress of ageing, concluding that temperature rather than pressure was the main factor influencing the ageing of geotextiles. Using a modified Arrhenius equation, it was possible to calculate the half-life for the loss of 50% of the strain, which corresponds to approximately 330 years. T2 - EuroGeo-7, Session Geosynthetics, Sustainability and Current Industry Challenges CY - Warschau, Poland DA - 04.09.2022 KW - Geosynthetics KW - Ageing KW - Autoclave tests PY - 2022 AN - OPUS4-55671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Beckmann, M. A1 - Danz, P. A1 - Deike, R. A1 - Dornack, C. A1 - Gehrmann, H.-J. A1 - Gleis, M. A1 - Hölemann, K. A1 - Karpf, R. A1 - Pieper, C. A1 - Quicker, P. A1 - von Raven, R. A1 - Seifert, H. A1 - Simon, Franz-Georg T1 - Positionspapier - Abfallverbrennung in der Zukunft N2 - Die Autoren zeigen dazu die gesetzlichen und energiepolitischen Rahmenbedingungen und Perspektiven auf, widmen sich in aktuellen Beiträgen zur Verfahrenstechnik der thermischen Abfallbehandlung sowohl den thermischen Hauptverfahren als auch der Abgasreinigung und gehen auf das Thema Wertstoffrückgewinnung ein. Ihr Fazit: Durch Anstrengungen, das stoffliche Recycling weiter zu optimieren, können künftig weitere Kreisläufe von Produkten und Materialien hochwertig geschlossen werden. Für manche Abfallströme wird dies aber aus verschiedenen Gründen nicht möglich sein – hier bleibt die thermische Abfallbehandlung unverzichtbar. KW - Rostasche KW - Abfallverbrennung PY - 2022 UR - https://dechema.de/Medien/Studien+und+Positionspapiere/2022+03+Abfallverbrennung.html SP - 1 EP - 52 PB - DECHEMA CY - Frankfurt/M. AN - OPUS4-54510 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp T1 - PFAS Sum Parameter and Structural Analysis N2 - Per- and polyfluoroalkyl substances (PFAS) are anionic, cationic and zwitterionic synthetic products, in which the hydrogen atoms on the carbon skeleton of at least one carbon atom have been completely replaced by fluorine atoms (see Figure 1) and which include more than 4730 compounds, depending on the definition. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. Furthermore, because of the continuous contamination through PFAS containing commercial products, effluents and sewage sludge from WWTPs have been shown to be an important source of PFAS discharge into the aquatic environment. In the last few years, legacy PFAS (≥C4) have been found in various environments, including soil, water and wastewater, and their environmental pathways have been partly described. To get a better overview of the amount of “total PFAS,” sum parameter methods like total oxidizable precursor (TOP) assay and methods based on combustion ion chromatography (CIC) are in development. CIC results in data regarding the sum of absorbable organic fluorine (AOF) or extractable organic fluorine (EOF), which can also quantify other organically bound fluorine compounds such as fluorinated pesticides and pharmaceutical. Additionally, for research purpose several spectroscopical methods like X-ray photoelectron spectroscopy (XPS), fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy, particular induced gamma-ray emission (PIGE) spectroscopy and 19F nuclear magnetic resonance (NMR) spectroscopy are available. Therefore, an overview is given on various analytical techniques for PFAS in environmental samples and their application possibilities discussed for different kind of PFAS compounds T2 - CleanUp 2022 CY - Adelaide, Australia DA - 11.09.2022 KW - PFAS KW - Combustion ion chromatography KW - XANES spectroscopy KW - Soil PY - 2022 AN - OPUS4-55743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Simon, Franz-Georg T1 - Per- und polyfluorierte Alkylsubstanzen (PFAS) im Klärschlamm - Analytische Methoden und Grenzwerte N2 - Per- und Polyfluoralkylsubstanzen (PFAS) sind eine Gruppe von mehr als 4700 anionischen und kationischen anthrophonen Stoffen, die aufgrund ihrer inerten chemischen Stabilität und ihrer Widerstandsfähigkeit gegen den Abbau durch Hitze oder Säuren in einer Vielzahl von Produkten verwendet werden. Infolge der ständigen Verwendung, vor allem in Feuerlöschschäumen für die Luftfahrt, wurden in Tausenden von Industrie- und Militäranlagen kontaminierte Böden und Grundwasservorkommen gefunden. Aufgrund der ständigen Verwendung von fluorierten Konsumgütern haben sich jedoch auch Abwässer und Klärschlamm aus Kläranlagen als Quelle für die Kontamination der aquatischen Umwelt mit PFAS erwiesen. Infolge der strengeren Vorschriften und Beschränkungen, die in den letzten Jahren für die Verwendung langkettiger (≥C8) PFAS erlassen wurden, findet in der chemischen Industrie eine deutliche Verlagerung hin zur Herstellung kurz- (C4-C7) und ultrakurzkettiger (C1-C3) Alternativen statt. Mit der Novellierung der Klärschlammverordnung im Jahr 2017 hat der deutsche Gesetzgeber die Ausbringung von Klärschlamm auf landwirtschaftlichen Flächen verboten, und bis 2029/2032 wird die Ausbringung von Klärschlamm in der Landwirtschaft vollständig verboten sein. Während die Belastung der Umwelt mit organischen Schadstoffen wie PFAS, Pestiziden und Arzneimitteln nicht mehr erwünscht ist, muss Phosphor (P) aus Klärschlamm weiterhin zur Herstellung hochwertiger P-Dünger für eine Kreislaufwirtschaft genutzt werden. Derzeit können pflanzenverfügbare P-Düngemittel aus Klärschlamm/Abwasser mit verschiedenen Behandlungsmethoden hergestellt werden, darunter Fällung, Auslaugung und thermische Behandlung. Der Verbleib von PFAS bei der Auslaugung, Ausfällung und Behandlung von Klärschlamm und Abwasser ist jedoch noch weitgehend unbekannt. T2 - Berliner Klärschlammkonferenz CY - Berlin, Germany DA - 14.11.2022 KW - Klärschlamm KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Phosphor KW - Düngemittel PY - 2022 AN - OPUS4-56291 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Simon, Franz-Georg ED - Holm, O. ED - Thomé-Kozmiensky, E. ED - Quicker, P. ED - Kopp-Assenmacher, S. T1 - Per- und polyfluorierte Alkylsubstanzen (PFAS) im Klärschlamm T2 - Verwertung von Klärschlamm 5 N2 - Per- and polyfluoroalkyl substances (PFAS) are a group of more than 4700 anionic and cationic anthrophonic substances which have been used extensively in a variety of products and industries due to their inert chemical stability and resistance to degradation by heat or acids. As a result of continuous use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil and groundwater resources. However, because of the continuous use of fluorinated consumer products, also effluents and sewage sludge from wastewater treatment plants (WWTPs) have been shown to be an important source of PFAS contamination into the aquatic environment. Resulting from recent stricter regulations and restrictions in the last years on the use of long chain (≥C8) PFAS, there is a significant shift in the chemical industry towards production of short (C4-C7) and ultrashort (C1-C3) chain alternatives. With the amendment of the Sewage Sludge Ordinance in 2017 the German legislation banned sewage sludge application on agricultural land, and by 2029/2032 sewage sludge will be completely prohibited from agricultural application. While environmental exposure of organic pollutants like PFAS, pesticides and pharmaceuticals are no longer desirable, phosphorus (P) from sewage sludge must still be used to produce high-quality P-fertilizers for a circular economy. Currently, plant-available P-fertilizers from sewage sludge/wastewater can be produced using a variety of treatment approaches including precipitation, leaching, and thermal treatment. However, the fate of legacy and emerging PFAS compounds during P leaching, precipitation and treatment from sewage sludge and wastewater is for the most parts still unknown. KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Klärschlamm KW - Düngemittel PY - 2022 SN - 978-3-944310-65-7 SP - 270 EP - 279 PB - Thomé-Kozmiensky Verlag GmbH CY - Neuruppin AN - OPUS4-56290 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Wittwer, Philipp A1 - Roesch, Philipp A1 - Simon, Franz-Georg T1 - Per- and polyfluoroalkyl substances (PFAS) in sewage sludge and wastewater-based fertilizers and future PFAS remediation N2 - Per- and polyfluoroalkyl substances (PFAS) are a group of anionic, cationic and zwitterionic synthetic products, in which the hydrogen atoms on the carbon skeleton of at least one carbon atom have been completely replaced by fluorine atoms and which include more than 4730 compounds, depending on the definition. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. As a result of the perpetual use of PFAS containing products, effluents and sewage sludge from wastewater treatment plants (WWTPs) have been observed to be an important pathway for PFAS into the environment. In Germany, phosphorus and other nutrients from sewage sludge and wastewater should be recycled in WWTPs of cities with a large population. However, it is not clear if PFAS contamination from wastewater and sewage sludge end up in novel wastewater-based fertilizers. Normally, PFAS are analyzed using PFAS protocols typically with liquid chromatography tandem mass spectrometry (LC-MS/MS) quantification. To get a better overview of the amount of “total PFAS,” we applied sum parameter methods based on combustion ion chromatography (CIC) to screen the PFAS contaminations in various sewage sludge and wastewater-based fertilizers. Furthermore, current decontamination strategies of PFAS-burdened soils mainly consist of adsorption methods using adsorbents for fixation of PFAS in the ground. A second option is the utilization of a “pump and treat” process, cycling polluted soils through a washing plant leading to the concentration of the pollutants in the fine fraction. Only a subsequent, high-energy consuming pyrolysis process guarantees the total destruction of all fluorinated organic contaminants. Both approaches are cost-intensive and not intended for the direct decomposition of all PFAS contaminants. Hence, there is a great demand for innovative developments and chemical treatment technologies, dealing with new strategies of tackling the PFAS problem. T2 - Seminar of Ben-Gurion University CY - Midreshet Ben-Gurion, Israel DA - 02.11.2022 KW - PFAS KW - Sewage sludge KW - XANES spectroscopy PY - 2022 AN - OPUS4-56166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Microspectroscopy reveals dust-derived apatite grains in highly-weathered soils from the Kohala climosequence on Hawaii N2 - Dust deposition is an important source of phosphorus (P) to many ecosystems. However, there is little evidence of dust-derived P-containing minerals in soils. Here we studied P forms along a well-described climatic gradient on Hawaii, which is also a dust deposition gradient. Soil mineralogy and soil P forms from six sites along the climatic gradient were analyzed with bulk (X-ray diffraction and P K-edge X-ray absorption near edge structure) and microscale (X-ray fluorescence, P K-edge X-ray absorption near edge structure, and Raman) analysis methods. In the wettest soils, apatite grains ranging from 5 to 30 μm in size were co-located at the micro-scale with quartz, a known continental dust indicator suggesting recent atmospheric deposition. In addition to colocation with quartz, further evidence of dust-derived P included backward trajectory modeling indicating that dust particles could be brought to Hawaii from the major global dust-loading areas in central Asia and northern Africa. Although it is not certain whether the individual observed apatite grains were derived from long-distance transport of dust, or from local dust sources such as volcanic ash or windblown fertilizer, these observations offer direct evidence that P-containing minerals have reached surface layers of highly-weathered grassland soils through atmospheric deposition. T2 - BESSY Science Seminar CY - Online meeting DA - 01.04.2022 KW - Phosphorus KW - Soil KW - X-ray diffraction KW - X-ray absorption near-edge structure (XANES) spectroscopy KW - Fertilizer KW - Raman spectroscopy KW - infrared spectroscopy PY - 2022 AN - OPUS4-54584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -