TY - JOUR A1 - Urbanczyk, M.M. A1 - Bester, K. A1 - Borho, N. A1 - Schoknecht, Ute A1 - Bollmann, U.E. T1 - Influence of pigments on phototransformation of biocides in paints N2 - Biocides are commonly applied to construction materials such as facade renders and paints in order to protect them from microbial spoilage. These renders and paints are exposed to weathering conditions, e.g., sunlight and rain. Pigments are interacting intensively with the spectrum of the incoming light; thus, an effect of paint pigments on phototransformation rates and reaction pathways of the biocides is hypothesized. In this study, the phototransformation of four commonly used biocides (carbendazim, diuron, octylisothiazolinone (OIT) and terbutryn) in four different paint formulations differing solely in pigments (red and black iron oxides, white titanium dioxide, and one pigment-free formulation) were investigated. Paints surfaces were irradiated under controlled conditions. The results show that biocides degrade most rapidly in the pigment-free formulation. The degradation in the pigment-free formulation followed a first-order kinetic model with the respective photolysis rate constants: kp,Diuron=0.0090 h−1, kp,OIT=0.1205 h−1, kp,Terbutryn=0.0079 h−1. Carbendazim concentrations did not change significantly. The degradation was considerably lower in the pigment-containing paints. The determination of several phototransformation products of terbutryn and octylisothiazolinone showed different transformation product ratios dependent on the pigment. Consequently, pigments not only reflect the incoming light, but also interact with the biocide photodegradation. KW - OIT KW - Terbutryn KW - Indirect photolysis KW - Construction materials PY - 2019 U6 - https://doi.org/10.1016/j.jhazmat.2018.10.018 SN - 0304-3894 VL - 364 SP - 125 EP - 133 PB - Elsevier AN - OPUS4-46328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Uhlig, S. A1 - Colson, B. A1 - Schoknecht, Ute T1 - A mathematical approach for the analysis of data obtained from the monitoring of biocides leached from treated materials exposed to outdoor conditions N2 - Leaching processes are responsible for the release of biocides from treated materials into the environment. Adequate modeling of emission processes is required in order to predict emission values in the framework of the risk assessment of biocidal products intended for long-term service life. Regression approaches have been applied to data obtained from the long-term monitoring of biocide emissions in experiments involving semi-field conditions. Due to the complex interaction of different underlying mechanisms such as water and biocide diffusion and desorption, however, these attempts have proven to be of limited usefulness e at least, for the available biocide emission data. It seems that the behavior of the biocide emission curve depends to a considerable extent on whichever underlying mechanism is slowest at a given point in time, thus limiting the amount of biocide available for release. Building on results obtained in the past few years, the authors propose a criterion for determining which mechanism controls the leaching process at a given point in time based on the slope of the log-log emission curve. In addition, a first-order approximation of this slope value is presented which displays advantages both in terms of computability and interpretability. Finally, an algorithm for the determination of breakpoints in the slope of the log-log emission curve is presented for the demarcation of phases within which one mechanism acts as a limiting factor. KW - Biocides KW - Leaching KW - Weathering KW - Mathematical analysis PY - 2019 U6 - https://doi.org/10.1016/j.chemosphere.2019.04.102 SN - 0045-6535 SN - 1879-1298 VL - 228 SP - 271 EP - 277 PB - Elsevier AN - OPUS4-47886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schoknecht, Ute A1 - Tietje, O. A1 - Borho, N. A1 - Burkhardt, M. A1 - Rohr, M. A1 - Vollpracht, A. A1 - Weiler, L. T1 - Environmental impact of construction products on aquatic systems - Principles of an integrated source-path-target concept N2 - Buildings exposed to water can release undesirable substances which, once transported to environmental compartments, may cause unwanted effects. These exposure pathways need to be investigated and included in risk assessments to safeguard water quality and promote the sustainability of construction materials. The applied materials, exposure conditions, distribution routes and resilience of receiving compartments vary considerably. This demonstrates the need for a consistent concept that integrates knowledge of emission sources, leaching processes, transport pathways, and effects on targets. Such a consistent concept can serve as the basis for environmental risk assessment for several scenarios using experimentally determined emissions. Typically, a source–path–target concept integrates data from standardized leaching tests and models to describe leaching processes, the distribution of substances in the environment and the occurrence of substances at different points of compliance. This article presents an integrated concept for assessing the environmental impact of construction products on aquatic systems and unravels currently existing gaps and necessary actions. This manuscript outlines a source–path–target concept applicable to a large variety of construction products. It is intended to highlight key elements of a holistic evaluation concept that could assist authorities in developing procedures for environmental risk assessments and mitigation measures and identifying knowledge gaps. KW - Construction products KW - Environmental impact KW - Assessment KW - Concept PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542175 SN - 2073-4441 VL - 14 IS - 2 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-54217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schoknecht, Ute A1 - Mathies, Helena A1 - Lisec, Jan T1 - Leaching and transformation of film preservatives in paints induced by combined exposure to ultraviolet radiation and water contact under controlled laboratory conditions N2 - Stormwater from urban areas can transport biocidally active substances and related transformation products from buildings into the environment. The occurrence of these substances in urban runoff depends on the availability of water, and on ultraviolet radiation exposure that causes photolytic reactions. In a systematic laboratory study, painted test specimens were exposed to either ultraviolet radiation, water contact, or a combination of both. Leaching of the biocidally active substances carbendazim, diuron, octylisothiazolinone, terbutryn, and selected transformation products of terbutryn and diuron were observed under various exposure conditions. Remaining concentrations of these substances in the paint were quantified. It was demonstrated that the distribution of active substances and transformation products in eluates and in the coatings themselves differs with exposure conditions. Strategies for environmental monitoring of biocide emissions need to consider the most relevant transformation products. However, environmental concentrations of biocidally active substances and transformation products depend on earlier exposure conditions. As a consequence, monitoring data cannot describe emission processes and predict expected leaching of biocidally active substances from buildings if the data are collected only occasionally. KW - Substance release KW - Construction products KW - Biocides KW - Transformation KW - UV radiation KW - Water contact PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-532114 SN - 2073-4441 VL - 13 IS - 17 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-53211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schoknecht, Ute A1 - Mathies, H. T1 - The Impact of Weather Conditions on Biocides in Paints N2 - Weather conditions affect biocides on exposed outer surfaces on constructions. Contact with water causes hydrolysis and leaching of substances. Ultraviolet radiation may induce photolysis. As a result, a mixture of biocidal active substances and transformation products can be emitted into the environment. In a semi-field study, leaching of the biocidal active substances terbutryn, diuron, octylisothiazolinone, carbendazim, and selected transformation products was observed for two paints containing either a white or a red pigment. Painted test panels were exposed to natural weathering for about 1.5 years. Runoff samples were analyzed during the course of the experiment. At the end of the study, residues of biocidal active substances and transformation products were determined in sections of the test panels. Emissions of substances were mainly observed during the first few months of the experiments. Increased emissions of transformation products were observed during periods of increased global radiation and subsequent periods with relatively high amounts of driving rain. Different patterns of transformation products were observed, especially for terbutryn, both for paints containing different pigments and in experiments that were started in different periods of the year, as well as during different periods of the experiments. KW - Substance release KW - Construction products KW - Biocides KW - Transformation KW - Weathering KW - Driving rain KW - Global radiation PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-560651 VL - 15 IS - 20 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-56065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schoknecht, Ute A1 - Kalbe, Ute A1 - Heisterkamp, I. A1 - Kretzschmar, M. A1 - Gartiser, S. A1 - Happel, O. A1 - Ilvonen, O. T1 - Release of substances from joint grouts based on various binder types and their ecotoxic effects N2 - Background: The leaching of substances and the ecotoxic effects of eluates were studied for joint grouts that are based on various types of binders. Eight products, two of them containing either epoxy resin, polybutadiene or polyurethane binders, or modifed cement, were investigated using harmonized leaching tests for construction products in combination with ecotoxicity tests on algae, daphnia, luminescent bacteria, fish eggs and mutagenicity in accordance with CEN/TR 17105. In addition to basic parameters, such as pH, TOC, and inorganic components, organic substances in the eluates were analysed by gas and liquid chromatography in combination with mass spectrometry. Quantitative analyses in combination with ecotoxicity data on selected substances were used to deduce which substances cause the observed ecotoxic effects. Results: Different patterns of ecotoxic effects were observed in joint grouts with different binder types. The most ecotoxic effects were observed in epoxy resin-based products, followed by polybutadiene-based products. Fewer ecotoxic effects were observed in polyurethane-based products and modifed cements. Some of these showed no ecotoxicity. Some of the substances in the eluates were identified and related to ecotoxic effects. 4-Tert-butylphenol and amines probably contributed to the ecotoxic effects of at least one of the epoxy resin-based renders, whereas cobalt is assumed to contribute to the toxic effect on algae of one of the polybutadiene-based products. However, only some of the leached substances could be identifed, and only some of the ecotoxic effects can be explained by the available information on the composition of eluates and known ecotoxic profiles of the identified substances. Conclusions: Ecotoxicity tests on eluates from leaching tests indicate whether environmentally hazardous substances can be leached from construction products. Combined ecotoxicity tests and chemical analysis of eluates from EU-wide harmonized leaching tests for construction products can provide information on substances that cause these effects. This supports the identifcation and development of environmentally friendly construction products. This study confirmed that ecotoxicity tests in accordance with CEN/TR 17105 are a tool well-suited to support the implementation of the European Commission’s zero pollution vision for 2050 and to reduce pollution to levels no longer considered harmful to health and natural ecosystems. KW - Joint grouts KW - Leaching KW - Ecotoxixity PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-562392 SN - 2190-4707 VL - 34 IS - 1 SP - 1 EP - 16 PB - Springer Nature CY - Berlin AN - OPUS4-56239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schoknecht, Ute A1 - Drescher, P. A1 - Fischer, M. A1 - Fürhapper, C. A1 - Gunschera, J. A1 - Hill, R. A1 - Melcher, E. A1 - Wegner, R. A1 - Wilken, U. A1 - Wittenzellner, J. T1 - Suitability of analytical methods to determine tebuconazole, propiconazole and permethrin in aged wood samples N2 - The suitability of common analytical methods for the determination of active substances from wood preservatives in aged wood samples was investigated during an interlaboratory study. Permethrin, propiconazole and tebuconazole were quantified in 1.5 and 8 year-old wood samples by gas chromatography and liquid chromatography. Generally, the applied Methods yielded reliable results for these samples. However, wood components can coelute with propiconazole and tebuconazole during liquid chromatography. Optimization of separation might be required if UV detection is applied. KW - Wood samples KW - Biocides KW - Analytical methods PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-503959 VL - 78 IS - 2 SP - 271 EP - 279 PB - Springer CY - Heidelberg AN - OPUS4-50395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heisterkamp, I. A1 - Ratte, M. A1 - Schoknecht, Ute A1 - Gartiser, S. A1 - Kalbe, Ute A1 - Ilvonen, O. T1 - Ecotoxicological evaluation of construction products: inter-laboratory test with DSLT and percolation test eluates in an aquatic biotest battery N2 - Background A European inter-laboratory test with 29 participating laboratories investigated whether a battery of four ecotoxicological tests is suitable for assessing the environmental compatibility of construction products. For this purpose, a construction product was investigated with the dynamic surface leaching test (DIN CEN/TS 16637-2) and the percolation test (DIN CEN/TS 16637-3). The eluates were produced centrally by one laboratory and were tested by the participants using the following biotests: algae test (ISO 8692), acute daphnia test (ISO 6341), luminescent bacteria test (DIN EN ISO 11348), and fish egg test (DIN EN ISO 15088). As toxicity measures, EC50 and LID values were calculated. Results Toxic effects of the eluates were detected by all four biotests. The bacteria test was by far the most sensitive, followed by the algae test and the daphnia test; the fish egg test was the least sensitive for eluates of both leaching tests. The toxicity level of the eluates was very high in the bacteria, daphnia, and algae test, with lowest ineffective dilution values of LID = 70 to LID = 13,000 and corresponding EC50 values around or even below 1 volume percent. The reproducibility (approximated by interlaboratory variability) of the biotests was good (< 53%) to very good (< 20%), regardless of the toxicity level of the eluates. The reproducibility of the algae test was up to 80%, and thus still acceptable. Conclusion It can be confirmed that the combination of leaching and ecotoxicity tests is suitable to characterize with sufficient reproducibility the environmental impact posed by the release of hazardous substances from construction products. KW - Inter-laboratory test KW - Construction products KW - Leaching tests KW - Ecotoxicity tests KW - Grouts PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-529198 VL - 33 IS - 1 SP - Article number: 75 PB - Springer AN - OPUS4-52919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heisterkamp, I. A1 - Gartiser, S. A1 - Schoknecht, Ute A1 - Happel, O. A1 - Kalbe, Ute A1 - Kretzschmar, M. A1 - Ilvonen, O. T1 - Investigating the ecotoxicity of construction product eluates as multicomponent mixtures N2 - The release of hazardous compounds from construction products can harm human health and the environment. To improve the sustainability of construction materials, the leaching of substances from construction products and their potential environmental impact should be assessed. Twenty-seven construction products from different product groups were examined with a combination of standardized leaching tests (dynamic surface leaching test and percolation test) and biotests (algae, daphnia, fish egg, luminescent bacteria, umu and Ames fluctuation tests). To identify the released substances, extensive qualitative and quantitative chemical analyses were performed, including gas chromatographic and liquid chromatographic screening techniques. Results: Many of the tested eluates caused signifcant ecotoxic efects. Particularly high ecotoxicities were observed for grouts (lowest ineffective dilution (LID) up to 16384) and cork granules (LID up to 24578). The results of ecotoxicity tests allow the prioritization of the eluates that should be subjected to detailed chemical analyses. Organic screening by different methods and ranking the identifed substances based on recorded hazard classification is a suitable approach to identify the relevant toxic substances. Conclusions: Determining the ecotoxicity of eluates from construction products records the summary effect of all leachable substances. This instrument is especially useful for construction products of complex and largely unknown composition. The ecotoxicological and the chemical–analytical approach complement each other in an ideal way to characterize the potential hazard of eluates from construction products and to identify the environmentally hazardous components in these eluates. Our results confirm that the proposed harmonized methods for testing eluate toxicity are an adequate and applicable procedure to move toward a more sustainable way of building and to reduce toxic effects of construction products in their use phase in the environment. KW - Construction products KW - Building materials KW - Ecotoxicity KW - Biotests KW - Leaching KW - Eluates KW - Chemical analysis KW - Analytical screening techniques KW - Mixture toxicity PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-568864 VL - 35 IS - 1 SP - 1 EP - 20 PB - Springer AN - OPUS4-56886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bandow, Nicole A1 - Gartiser, S. A1 - Ilvonen, O. A1 - Schoknecht, Ute T1 - Evaluation of the impact of construction products on the environment by leaching of possibly hazardous substances N2 - Construction products are in contact with water (e.g., rain, seepage water) during their service lifetime and may release potentially harmful compounds by leaching processes. Monitoring studies showed that compounds attributed to construction products are found in storm water and the receiving bodies of water and that the release of biocides in urban areas can be comparable to the input of pesticides from agricultural uses. Therefore, a prospective risk assessment of such products is necessary. Laboratory leaching tests have been developed by the Technical Committee CEN/TC 351 and are ready to use. One major task in the future will be the evaluation of the leaching test results, as concentrations found in laboratory experiments are not directly comparable to the field situations. Another Task will be the selection of compounds to be considered for construction products, which are often a complex mixture and contain additives, pigments, stabilization agents, etc. The formulations of the products may serve as a starting point, but total content is a poor predictor for leachability, and analysis of the eluates is necessary. In some cases, nontargeted approaches might be required to identify compounds in the eluates. In the identification process, plausibility checks referring to available information should be included. Ecotoxicological tests are a complementary method to test eluates, and the combined effects of all compounds—including Degradation products—are included. A bio test battery has been applied in a round robin test and was published in a guidance document. Published studies on the ecotoxicity of construction products show the tests’ suitability to distinguish between products with small and larger effects on the environment. KW - Prospective risk assessment KW - Groundwater KW - Surface water KW - Soil KW - Ecotoxicological tests KW - Targeted and nontargeted PY - 2018 U6 - https://doi.org/10.1186/s12302-018-0144-2 SN - 2190-4715 SN - 2190-4707 VL - 30 SP - Article 14, 1 EP - 12 PB - SpringerOpen CY - London AN - OPUS4-44914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -