TY - JOUR A1 - Stawski, Tomasz A1 - Karafiludis, Stephanos A1 - Pimentel, Carlos A1 - Montes-Hernández, German A1 - Kochovski, Zdravko A1 - Bienert, Ralf A1 - Weimann, Karin A1 - Emmerling, Franziska A1 - Scoppola, Ernesto A1 - Van Driessche, Alexander E.S. T1 - Solution-driven processing of calcium sulfate: The mechanism of the reversible transformation of gypsum to bassanite in brines N2 - Here, we show that calcium sulfate dihydrate (gypsum) can be directly, rapidly and reversibly converted to calcium sulfate hemihydrate (bassanite) in high salinity solutions (brines). The optimum conditions for the efficient production of bassanite in a short time (<5 min) involve the use of brines with c(NaCl) > 4 M and maintaining a temperature, T > 80 °C. When the solution containing bassanite crystals is cooled down to around room temperature, eventually gypsum is formed. When the temperature is raised again to T > 80 °C, bassanite is rapidly re-precipitated. This contrasts with the better-known behaviour of the bassanite phase in low-salt environments. In low-salinity aqueous solutions, bassanite is considered to be metastable with respect to gypsum and anhydrite, and therefore gypsum-to-bassanite conversion does not occur in pure water. Interestingly, the high-salinity transformation of gypsum-to-bassanite has been reported by many authors and used in practice for several decades, although its very occurrence actually contradicts numerical thermodynamic predictions regarding solubility of calcium sulfate phases. By following the evolution of crystalline phases with in situ and time-resolved X-ray diffraction/scattering and Raman spectroscopy, we demonstrated that the phase stability in brines at elevated temperatures was inaccurately represented in the thermodynamic databases. Most notably for c(NaCl) > 4 M, and T > 80 °C gypsum becomes readily more soluble than bassanite, which induces the direct precipitation of the latter from gypsum. The fact that these transformations are controlled by the solution provides extensive opportunities for precise manipulation of crystal formation. Our experiments confirmed that bassanite remained the sole crystalline phase for many hours before reverting into gypsum. This property is extremely advantageous for practical processing and efficient crystal extraction in industrial scenarios. KW - Industrial and Manufacturing Engineering KW - Strategy and Management KW - General Environmental Science KW - Renewable Energy, Sustainability and the Environment KW - Building and Construction KW - Calcium sulfate KW - Gypsum KW - Bassanite KW - Scattering KW - Raman KW - In situ KW - Synchrotron KW - BESSY KW - MySpot PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-594698 UR - https://www.sciencedirect.com/science/article/pii/S0959652624004591#appsec1 SN - 0959-6526 VL - 440 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-59469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, Xiangju A1 - Huang, Yanliang A1 - Li, Jianzheng A1 - Yang, Dan A1 - Xu, Yong A1 - Kunte, Hans-Jörg T1 - Effect of microbial hydrogen consumption on the hydrogen permeation behaviour of AISI 4135 steel under cathodic protection N2 - The feasibility of microbial hydrogen consumption to mitigate the hydrogen embrittlement (HE) under different cathodic potentials was evaluated using the Devanathan-Stachurski electrochemical test and the hydrogen permeation efficiency h. The hydrogen permeation efficiency h in the presence of strain GA-1 was lower than that in sterile medium. The cathodic potential inhibited the adherence of strain GA-1 to AISI 4135 steel surface, thereby reducing the hydrogen consumption of strain GA-1. The adherent GA-1 cells were capable of consuming ‘cathodic hydrogen’ and reducing the proportions of absorbed hydrogen, indicating that it is theoretically possible to control HE by hydrogen-consuming microbes. KW - Energy Engineering and Power Technology KW - Condensed Matter Physics KW - Fuel Technology KW - Renewable Energy, Sustainability and the Environment PY - 2020 U6 - https://doi.org/10.1016/j.ijhydene.2019.12.058 SN - 1879-3487 VL - 45 IS - 7 SP - 4054 EP - 4064 PB - Elsevier BV CY - New York, NY AN - OPUS4-59319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, Yanliang A1 - Liu, Xiangju A1 - Zhang, Qichao A1 - Xu, Yong A1 - Kunte, Hans-Jörg A1 - De Marco, Roland T1 - Hydrogen release from carbon steel in chloride solution under anodic polarization N2 - The hydrogen permeation current increase was noticed for carbon steel in 0.5 mol/L NaCl solution under strong anodic potentials, which is contrary to the common understanding. Hydrogen permeation under cathodic potentials has been widely studied because of possible hydrogen embrittlement failures of high strength steels in seawater, but investigations of anodic polarization on hydrogen permeation are fairly rare, as the hydrogen evolution reaction shall be retarded. To corroborate the observed phenomenon, experiments were conducted using both as-received and vacuum-annealed sheet specimens. It was verified that the observed phenomena originated from the released hydrogen in traps by metal dissolution under anodic polarization. KW - Energy Engineering and Power Technology KW - Condensed Matter Physics KW - Fuel Technology KW - Renewable Energy, Sustainability and the Environment PY - 2020 U6 - https://doi.org/10.1016/j.ijhydene.2019.11.218 SN - 1879-3487 VL - 45 IS - 4 SP - 3307 EP - 3315 PB - Elsevier BV CY - New York, NY AN - OPUS4-59322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -