TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Question: Biocides are in contact with soils through direct application and passive leaching from protected materials. Consequently, soil microorganisms are exposed to toxic biocides even though they are not their primary targets. Soil is a large reservoir of microbial diversity and has been hypothesized to be a crucial factor for the evolution and spread of antimicrobial resistance. Currently, there is little knowledge on how biocides used to protect materials affect the evolution and spread of resistance. Thus, our aim is to investigate the risk for the evolution of biocide resistance and cross-resistance to antibiotics. In addition, we aim to elucidate the affect of biocides on the spread of resistance via horizontal gene transfer (HGT). Methods: In laboratory evolution experiments we culture selected model soil microorganism with representative biocides followed by antibiotic cross-resistance determination and genome sequencing. Moreover, we investigate if the selected biocides affect the HGT frequency of plasmids that carry resistance genes among soil microorganism and the consequences for survival of the affected populations. Results: Our initial results show only small increases of biocide resistance during serial transfers in the presence of biocides. One reason for this might be the narrow selective window for biocide resistance due to steep dose-response relationships. Furthermore, we will present results from ongoing experiments on the effects of material preservatives on HGT frequencies facilitating microbial community adaptation to stress. Conclusions: The results will enable future risk assessment regarding resistance evolution for biocides used as material preservatives. T2 - Symposium für Doktorandinnen und Doktoranden – 2019 CY - Berlin, Germany DA - 27.09.2019 KW - Biocides KW - Horizontal gene transfer HGT KW - Microbiology KW - Resistance evolution KW - Antimicrobial resistance PY - 2019 AN - OPUS4-49404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Koerdt, Andrea T1 - Investigating and modelling MIC using in-house developed flow system (Hi-Tension) N2 - Microbiologically influenced corrosion is a multidisciplinary research area. To develop successful mitigation strategies, expertise from the industry and research institutes are essential. In Department 4.1, we developed an innovative laboratory flow model (Hi-Tension) that allows effective monitoring of MIC under both standard and non-standard conditions. The flow model allows flexibility with material selection, flow rates, temperature and other environmental parameters changes. Furthermore, the flow model allows integration of electrochemical measurements using microsensors, providing a comprehensive view of corrosion at the biofilm level. Currently, initial results indicate corrosion in the flow model is significantly higher than that of standard laboratory set ups, i.e. static incubations, particularly for methane-producing microorganisms. T2 - Departmental Meeting with Helmotz Dresden CY - BAM, Berlin, Germany DA - 04.11.2019 KW - MIC KW - Corrosion KW - FIB/SEM KW - Corrosion products KW - Hi-Tension KW - Flow Model KW - Modelling PY - 2019 AN - OPUS4-49417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Koerdt, Andrea A1 - Kleinbub, Sherin T1 - Microbial modelling of sulfate-reducing bacteria (SRB) and methanogenic archaea (ME) using iron N2 - Sulfate reducing bacteria (SRB) and methanogenic archaea (MA) are commonly found in the oil and gas environments. The formation of hydrogen sulfide (HS-) is particularly concerning for the petroleum industry due to its corrosiveness. However, the activities of SRB are limited to the concentration of sulfate present in the environment, whereas methanogens can utilize substrates such as H¬2 for methanogenesis. MA is commonly found in sulfate-free environments, such as deep sediments, and are known to form interspecies electron transfer relationships with SRB. Recently, SRB and MA capable of microbiologically influenced corrosion (MIC) by using elemental iron as a direct electron source (EMIC) have gained increased attention. On the iron surface, EMIC-SRB can outcompete EMIC-MA in the presence of sulfate, but this changes as sulfate depletes. The formation of FeS on the metal surface can be further utilized by MA for methanogenesis as it provides a conductive path. However, the possible kinetics involved of the overall process are currently unknown. We obtained a co-culture of EMIC-SRB and EMIC-MA to investigate the growth rates and electrical potential changes under different environmental conditions, including changes in pH, temperature and salinity. Results indicate that under neutral conditions and using iron as the sole substrate, methane production (up to 5 mM) starts after sulfate was depleted. Electrochemical measurements will be conducted on the co-culture under different conditions to determine the changes in the electrical potential in correlation with the sulfate and methane concentration. Fluorescence and electron microscope images of the biofilm structure will be used to visualize cell distribution and morphology. This study embarks the first step of understanding the relationship between EMIC-SRB and EMIC-MA. Such knowledge is important for the field of microbial electrophysiology and can be further explored for industrial applications. T2 - 7th International Symposium on Applied Microbiology and Molecular Biology in Oil Systems (ISMOS-7) CY - Halifax, Canada DA - 18.06.2019 KW - MIC KW - Corrosion KW - FIB/SEM KW - Corrosion products KW - Bacteria KW - Archaea KW - Iron PY - 2019 AN - OPUS4-49420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kämpf, K. A1 - Schmidt, Alexandra A1 - Bresch, Harald A1 - Bachmann, V. A1 - Kuhlbusch, T. A1 - Schwirn, K. A1 - Völker, D. T1 - Test Guideline on Particle Size and Size Distribution of Manufactured Nanomaterials N2 - The particle size distribution is considered the most relevant information for nanoscale property identification and material characterization. The current OECD test guideline on particle size and size distribution (TG 110) is not applicable to ‘nano-sized’ objects. In this project we thus develop a new OECD test guideline for the measurement of the size and size distribution of particles and fibers with at least one dimension in the nanoscale. A fiber is defined as an object having an aspect ratio of length/diameter l/d >3. The width and length of each fiber should be measured concurrently. In order to measure the particle size distributions, many techniques are available. 9 methods for particles and 2 methods for fibres have been tested in a prevalidation study and appropriate methods will be compared in an interlaboratory round robin test starting in February 2019. T2 - Workshop zur gemeinsamen Forschungsstrategie der Bundesoberbehörden „Nanomaterialien und andere innovative Werkstoffe: anwendungssicher und umweltverträglich“ CY - Berlin, Germany DA - 02.09.2019 KW - OECD KW - Nano KW - Guideline KW - Particle size distributuion KW - Prüfrichtlinie PY - 2019 AN - OPUS4-49507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -