TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen A1 - Kleinbub, Sherin T1 - Microbial corrosion coupled to methanogenesis by strains from different environments N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms, either chemically (formation of hydrogen sulfide) or electrically (direct electron uptake). Methanogenetic Archaea are also known to be involved in iron corrosion, forming a multi-species biofilm on corroding metallic structures. However, mechanistic details and kinetics of the overall process in methanogen-induced MIC are poorly understood. T2 - Beirat Material CY - Berlin, Germany DA - 26.04.2018 KW - Corrosion KW - Methanogens KW - Archaea KW - Implants KW - Biofilm PY - 2018 AN - OPUS4-45112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Özcan Sandikcioglu, Özlem A1 - Widdel, F. T1 - Microbial corrosion of iron coupled to methanogenesis by strains from different environments N2 - Microbially influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) which act upon the metal by the reactiveness of hydrogen sulfide, and by withdrawal of the available electrons (Fe → Fe²⁺ + 2e⁻ ; E° = 0.47 V) in electrical contact through surface attachment. Also methanogenic archaea are supposed to cause MIC. Because they do not produce hydrogen sulfide, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. Precipitation of siderite (4Fe + 5HCO₃⁻ + 5H⁺ → 4FeCO₃ + CH₄ + 3H₂O) can lead to an insulating layer on the metal surface and lower the corrosion rate. Still, the extent of FeCO₃ precipitation may be significantly influenced by environmental conditions such as pH and advective processes. To investigate the corrosive potential of methanogens, we studied strains isolated from marine sediments (Methanococcus maripaludis 14266, 2067, Methanobacterium-affiliated strain IM1), crude oil tanks (Methanococcus maripaludis Mic1c10, KA1) and the oral cavity (Methanobrevibacter oralis) in a closed (batch) culture, and in a sand-packed flow-through cell with pH control and simulation of a fluctuating environment. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.3 mm/yr) are comparable to that caused by SRM. Surface analyses of the metal showed severe pitting. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC. T2 - ISME 17th International Symposium on Microbial Ecology CY - Leipzig, Germany DA - 12.08.2018 KW - Corrosion KW - Methanogens KW - Biofilm KW - Flow-System KW - Iron PY - 2018 AN - OPUS4-45735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stroj, S. A1 - Schwibbert, Karin A1 - Kasemann, S. A1 - Domke, M. T1 - Laser-generated high wetting contrast surfaces for microbiological applications N2 - We demonstrate a 2D platform based on high contrast wetting patterns suitable for miniaturized microbiological assays. In principal, superhydrophilic spots are surrounded by a superhydrophobic surface area. The special structure of the superhydrophilic functional surface ensures that liquids, e.g. bacterial suspensions or biocide solutions, spread immediately and evenly on this surface without passing the wetting boundary. This feature allows a homogenous distribution of bacteria or chemical substances on well defined lateral dimensions. The superhydrophilic spots may also serve as substrate for bacterial biofilms. Due to the high wetting contrast and the fabrication process, it is possible to minimize the test areas as well as their distance to each other. We demonstrate the fabrication process of the high wetting contrast platform and also present a microbiological assay as an application example. Advantages of this platform are the use of low volumes and its potential of automated analysis. T2 - Biointerfaces International Conference CY - Zürich, Austria DA - 14.08.2018 KW - Biofilm KW - Bacterial growth KW - Laser structuring KW - Superhydrophobic surface KW - Superhydrophilic surface PY - 2018 AN - OPUS4-45863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kleinbub, Sherin A1 - An, Biwen Annie A1 - Özcan Sandikcioglu, Özlem A1 - Dommisch, H. A1 - Koerdt, Andrea T1 - The impact of methanogenic Archaea on material, environment and health N2 - Microbiologically influence corrosion (MIC) has become a big concern due the increased usage of different metals by our society. Microorganisms can use metal as an electron donor, causing unpredictable but serious damages. Nowadays it is known that besides sulfate reducing bacteria (SRB), other microorganisms including acetogens, iron oxidizers and methanogens can also induce MIC. Current studies related to methanogen-induced MIC (MI-MIC) mainly focused on environmental isolates from the oil and gas industry (e.g. Methanococcus maripaludis) with industrial materials e.g. iron. However, MI-MIC can occur in many other environments as well, including the oral cavity. Methanobrevibacter oralis is a methanogen isolated from the human oral cavity and was found more frequently in patients suffering from peri-implantitis/periodontitis. Titanium-implants removed from those patients have also showed clear signs of corrosion. The aim of our study is to establish and analyze corrosion potentials of dental metals (e.g. titanium) by oral methanogens. Periodontal pockets samples from patients suffering from periodontitis/peri-implantitis were taken for methanogenic and SRB enrichments. Stainless steel, pure titanium or Ti-6Al-4V alloy was used for corrosion studies. Corrosion rates and methane production were measured using weight-loss method and gas chromatography, respectively. Metal surfaces were visualized with scanning electron microscopy. Microbial communities in the dental pockets of healthy people and patients will be compared using 16S rRNA amplicon sequencing. Overall, this is the first study investigating the susceptibility of different dental implant materials to corrosion using human-related Archaea. The outcomes of this study can be further explored for a variety of clinical applications. T2 - ISME 17th International Symposium on Microbial Ecology CY - Leipzig, Germany DA - 12.08.2018 KW - Methanogens KW - Corrosion KW - Biofilm PY - 2018 AN - OPUS4-45932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwibbert, Karin A1 - Menzel, F. A1 - Epperlein, N. A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Bacterial adhesion on femtosecond laser-modified polyethylene JF - Materials N2 - In this study, femtosecond laser-induced sub-micrometer structures are generated to modify polyethylene (PE) surface topographies. These surfaces were subjected to bacterial colonization studies with Escherichia coli and Staphylococcus aureus as test strains. The results reveal that the nanostructures do not influence S. aureus coverage, while the adhesion of E. coli is reduced. KW - Bacterial adhesion KW - Laser-modified surface KW - Polyethylene KW - Laser-induced nanostructures KW - Biofilm PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492280 DO - https://doi.org/10.3390/ma12193107 VL - 12 IS - 19 SP - 3107 PB - MDPI CY - Basel, Schweiz AN - OPUS4-49228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kleinbub, Sherin A1 - An, Biwen Annie A1 - Heidrich, Gabriele A1 - Özcan Sandikcioglu, Özlem A1 - Schenderlein, Matthias A1 - Dommisch, H. A1 - Wagner, D. A1 - Koerdt, Andrea T1 - Investigation of the corrosion potential by oral microorganisms related to periodontitis and peri-implantitis N2 - Since the early 19th century microorganisms were studied on their capabilities of causing microbiologically influenced corrosion (MIC) of metals. The most studied ones are sulfate-reducing bacteria (SRB), but others can corrode metals as well, e.g. acid-producing bacteria or methanogenic archaea (MA). However, these studies were mostly focused on metals related to the petroleum industry but metals for other industries, e.g. dentistry, are also susceptible to corrosion. The inert Titanium (Ti) is often used as an implant material, but it is a base metal. The formation of a passivating oxide layer allows Ti to be corrosion resistant at normal conditions. Nonetheless, scanning electron microscope images on dental implants from patients with acute peri-implantitis showed clear signs of corrosion. Currently, the corrosion mechanism of dental implants is unknown, but many indications suggest that oral microorganisms, including MA (Methanobrevibacter oralis) and SRB (Desulfomicrobium orale), could be involved. To determine if MA or SRB can corrode Ti (pure Ti or Ti-6Al-4V alloy), corrosion rate, methane and sulfide concentrations were analyzed. Electrical potential measurements using in-house developed electrochemical cells indicated a potential change on Ti in the presence of a corrosive MA strain compared to an abiotic control. Microbial composition comparison will be analyzed using samples from dental pockets of 150 infected patients by considering the quality of the implant and 50 healthy people by means of amplicon sequencing. Enrichments and isolation of pure cultures from the dentals samples are also examined for their corrosion behavior. Overall, this is the first study investigating the susceptibility of dental implant material to corrosion using human related MA. T2 - Annual Conference of the Association for General and Applied Microbiology CY - Mainz, Germany DA - 17.03.2019 KW - Methanogens KW - Microbiologically Influrenced Corrosion (MIC) KW - Biofilm PY - 2019 AN - OPUS4-47600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Anja A1 - Possling, A. A1 - Malysheva, N. A1 - Yousef, K. P. A1 - Herbst, S. A1 - von Kleist, M. A1 - Hengge, R. T1 - Local c-di-GMP signaling in the control of synthesis of the E. coli biofilm exopolysaccharide pEtN-cellulose JF - Journal of Molecular Biology N2 - In many bacteria, the biofilm-promoting second messenger c-di-GMP is produced and degraded by multiple diguanylate cyclases (DGC) and phosphodiesterases (PDE), respectively. High target specificity of some of these enzymes has led to theoretical concepts of "local" c-di-GMP signaling. In Escherichia coli K-12, which has 12 DGCs and 13 PDEs, a single DGC, DgcC, is specifically required for the biosynthesis of the biofilm exopolysaccharide pEtN-cellulose without affecting the cellular c-di-GMP pool, but the mechanistic basis of this target specificity has remained obscure. DGC activity of membrane-associated DgcC, which is demonstrated in vitro in nanodiscs, is shown to be necessary and sufficient to specifically activate cellulose biosynthesis in vivo. DgcC and a particular PDE, PdeK (encoded right next to the cellulose operon), directly interact with cellulose synthase subunit BcsB and with each other, thus establishing physical proximity between cellulose synthase and a local source and sink of c-di-GMP. This arrangement provides a localized, yet open source of c-di-GMP right next to cellulose synthase subunit BcsA, which needs allosteric activation by c-di-GMP. Through mathematical modeling and simulation, we demonstrate that BcsA binding from the low cytosolic c-di-GMP pool in E. coli is negligible, whereas a single c-di-GMP molecule that is produced and released in direct proximity to cellulose synthase increases the probability of c-di-GMP binding to BcsA several hundred-fold. This local c-di-GMP signaling could provide a blueprint for target-specific second messenger signaling also in other bacteria where multiple second messenger producing and degrading enzymes exist. KW - Biofilm KW - Cellulose synthase KW - Bacterial second messenger KW - C-di-GMP PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511214 DO - https://doi.org/10.1016/j.jmb.2020.06.006 SN - 0022-2836 VL - 432 IS - 16 SP - 4576 EP - 4595 PB - Elsevir Ltd. AN - OPUS4-51121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schiebel, J. A1 - Noack, J. A1 - Rödiger, S. A1 - Kammel, A. A1 - Menzel, Friederike A1 - Schwibbert, Karin A1 - Weise, Matthias A1 - Weiss, R. A1 - Böhm, A. A1 - Nitschke, J. A1 - Elimport, A. A1 - Roggenbuck, D. A1 - Schierack, P. T1 - Analysis of three-dimensional biofilms on different material surfaces JF - Biomaterials Science N2 - Biofilms cause complications and high costs in both industry and medicine. Of particular interest are bacterial infections of prosthetic materials, which usually cannot be eliminated due to the high antibiotic resistance known for bacteria forming biofilms. The search for new materials and coatings with lower colonization potential and antibacterial activity is of great importance to reduce biofilm formation. However, there is no standardized procedure to examine the colonization characteristics of bacteria in the Biofilm state in situ. Here, we describe an automated epifluorescence microscopy system for the semi-quantitative analysis of three-dimensional (3D) biofilms on various surfaces. To analyze adherent bacteria, three materials (glass, steel and titanium) were incubated with bacteria in a flow chamber system. After fluorescence staining of the bacteria, automated image capturing, quantification of the bacteria, measurement of the colonized area and determination of the 3D biofilm height were carried out by using novel software. Furthermore, the materials were examined for their surface topography using white light scanning interferometry. Titanium compared to glass showed a significantly higher number of adherent bacteria. We argue that this was due to the higher microroughness of titanium. The colonized area was in accordance with the number of adherent bacteria and was also significantly larger on titanium coupons compared to glass. Maximum 3D biofilm height on glass coupons was significantly lower compared to the ones on steel and titanium. This novel method enables the standardized, automated investigation of the colonization with bacteria on different materials. This approach can considerably support the characterization of new material surfaces and their innovative coatings by analyzing the amount of attached Bacteria and thickness of biofilms in situ and eliminates the need of conventional cultivation. KW - Biofilm KW - Bacterial adhesion KW - Biofilm quantification KW - Automated analysis PY - 2020 DO - https://doi.org/10.1039/D0BM00455C SP - 1 EP - 11 PB - Royal Society of Chemistry AN - OPUS4-50815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromer, C. A1 - Schwibbert, Karin A1 - Radunz, S. A1 - Thiele, Dorothea A1 - Laux, P. A1 - Luch, A. A1 - Tschiche, H.R. T1 - ROS generating BODIPY loaded nanoparticles for photodynamic eradication of biofilms JF - Frontiers in Microbiology N2 - Bacterial biofilms can pose a serious health risk to humans and are less susceptible to antibiotics and disinfection than planktonic bacteria. Here, a novel method for biofilm eradication based on antimicrobial photodynamic therapy utilizing a nanoparticle in conjunction with a BODIPY derivative as photosensitizer was developed. Reactive oxygen species are generated upon illumination with visible light and lead to a strong, controllable and persistent eradication of both planktonic bacteria and biofilms. One of the biggest challenges in biofilm eradication is the penetration of the antimicrobial agent into the biofilm and its matrix. A biocompatible hydrophilic nanoparticle was utilized as a delivery system for the hydrophobic BODIPY dye and enabled its accumulation within the biofilm. This key feature of delivering the antimicrobial agent to the site of action where it is activated resulted in effective eradication of all tested biofilms. Here, 3 bacterial species that commonly form clinically relevant pathogenic biofilms were selected: Escherichia coli, Staphylococcus aureus and Streptococcus mutans. The development of this antimicrobial photodynamic therapy tool for biofilm eradication takes a promising step towards new methods for the much needed treatment of pathogenic biofilms. KW - Biofilm KW - Antimicrobials KW - Photodynamic therapy KW - BODIPY PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587588 DO - https://doi.org/10.3389/fmicb.2023.1274715 SN - 1664-302X VL - 14 SP - 1 EP - 15 AN - OPUS4-58758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Razkin Bartolomé, Malen A1 - Gräf, S. A1 - Thiele, Dorothea A1 - Sahre, Mario A1 - Zabala, A. A1 - Buruaga, L. A1 - Krüger, Jörg A1 - Müller, F.A. A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Bacterial adhesion on fs-laser processed laser-induced periodic surface structures N2 - Bacteria are ubiquitous and colonize all types of surfaces, including those in close proximity to humans, such as skin, food, and everyday objects. This raises the question of whether their presence represents a problem to be mitigated or a potential source of benefit to be harnessed, thereby stimulating scientific inquiry into the role of surface-associated bacteria in diverse domains ranging fromhuman health to industrial biotechnology. Aim: The objective of this project is to explore the impact of modifying surface topography on bacterial adhesion behavior. By manipulating the physical characteristics of the substrate, the attachment and detachment dynamics of bacteria can potentially be modified, leading to novel strategies for controlling bacterial colonization in various applications, such as medical devices. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were tested on LIPSS-covered Fused Silica samples. T2 - 2023 Spring Meeting · , 2023 · Strasbourg CY - Strasbourg, France DA - 29.05.2023 KW - LIPSS KW - Biofilm KW - fs-laser processing PY - 2023 AN - OPUS4-58456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -