TY - JOUR A1 - Plarre, Rüdiger A1 - Zocca, Andrea A1 - Spitzer, Andrea A1 - Benemann, Sigrid A1 - Gorbushina, Anna A1 - Li, Y. A1 - Waske, Anja A1 - Funk, Alexander A1 - Wilgig, Janka A1 - Günster, Jens T1 - Searching for biological feedstock material: 3D printing of wood particles from house borer and drywood termite frass N2 - Frass (fine powdery refuse or fragile perforated wood produced by the activity of boring insects) of larvae of the European house borer (EHB) and of drywood termites was tested as a natural and novel feedstock for 3D-printing of wood-based materials. Small particles produced by the drywood termite Incisitermes marginipennis and the EHB Hylotrupes bajulus during feeding in construction timber, were used. Frass is a powdery material of particularly consistent quality that is essentially biologically processed wood mixed with debris of wood and faeces. The filigree-like particles flow easily permitting the build-up of woodbased structures in a layer wise fashion using the Binder Jetting printing process. The Quality of powders produced by different insect species was compared along with the processing steps and properties of the printed parts. Drywood termite frass with a Hausner Ratio HR = 1.1 with ρBulk = 0.67 g/cm3 and ρTap = 0.74 g/cm3 was perfectly suited to deposition of uniformly packed layers in 3D printing. We suggest that a variety of naturally available feedstocks could be used in environmentally responsible approaches to scientific material sciences/additive manufacturing. KW - 3D printing KW - X-ray tomographic KW - SEM micrography KW - Drywood termite PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521517 DO - https://doi.org/10.1371/journal.pone.0246511 VL - 16 IS - 2 SP - e0246511 AN - OPUS4-52151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stock, S. C. A1 - Koester, M. A1 - Boy, J. A1 - Godoy, R. A1 - Nájera, F. A1 - Matus, F.J. A1 - Merino, C. A1 - Abdallah, Khaled A1 - Leuschner, C. A1 - Spielvogel, S. A1 - Gorbushina, Anna A1 - Kuzyakov, Y. A1 - Dippold, M. A. T1 - Plant carbon investment infine roots and arbuscular mycorrhizal fungi: Across-biome study on nutrient acquisition strategies N2 - Plant resource acquisition strategies were ecosystem-specific with distinct mutualism with arbuscular mycorrhizal (AM) fungi. Root traits indicated conservative resource economics in the arid shrubland, but an acquisitive and self-sufficient (“do-it-yourself”) acquisition strategy in the semiarid coastal matorral, resulting in large carbon (C) investments (green). Forest plants with conservative root traits seem to intensively outsource their acquisition to AM fungi, compensating for lower uptake capacities of conservative roots (red line). High allocations of freshly assimilated C into AM fungal storage compounds illustrated the relevance of AM fungi as C sink, especially in the semiarid matorral. KW - Natural ecosystems KW - Temperate rain forest KW - Arbuscular mycorrhiza KW - Plant economic spectrum KW - Root economics space KW - 13CO2 pulse labeling PY - 2021 DO - https://doi.org/10.1016/j.scitotenv.2021.146748 VL - 781 SP - 146748 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-52804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gerrits, Ruben A1 - Wirth, R. A1 - Schreiber, A. A1 - Feldmann, Ines A1 - Knabe, Nicole A1 - Schott, J, A1 - Benning, L.G. A1 - Gorbushina, Anna T1 - High-resolution imaging of fungal biofilm-induced olivine weathering N2 - Many microorganisms including free-living and symbiotic fungi weather minerals through the formation of biofilms on their surface. Weathering thus proceeds not only according to the mineral’s chemistry and the environmental conditions but also according to the local biofilm chemistry. These processes can be dissected in experiments with defined environmental settings and by employing genetic tools to modify traits of the fungal biofilm. Biofilms of the rock-inhabiting fungus Knufia petricola strain A95 (wild-type, WT) and its melanin-deficient mutant (ΔKppks) were grown on polished olivine sections in subaerial (air-exposed) and subaquatic (submerged) conditions. After seven months of interaction at pH 6 and 25°C, the fungus-mineral interface and abiotic olivine surface were compared using high resolution transmission electron microscopy (HRTEM). The abiotic, subaquatic olivine section showed a 25 nm thick, continuous amorphous layer, enriched in Fe and depleted in Si compared to the underlying crystalline olivine. This amorphous layer formed either through a coupled interfacial dissolution reprecipitation mechanism or through the adsorption of silicic acid on precipitated ferric hydroxides. Its thickness was likely enhanced by mechanical stresses of polishing. Directly underneath a fungal biofilm (WT and mutant alike), the surface remained mostly crystalline and was strongly etched and weathered, indicating enhanced olivine dissolution. The correlation between enhanced olivine dissolution and the absence of a continuous amorphous layer is a strong indication of the dissolution-inhibiting qualities of the latter. We propose that the fungal biofilm sequesters significant amounts of Fe, preventing formation of the amorphous layer and driving olivine dissolution onwards. The seemingly similar olivine surface underneath both WT and mutant biofilms illustrates the comparably insignificant role of specific biofilm traits in the weathering of olivine once biofilm attachment is imposed. Under subaerial conditions, the absence of water on the abiotic surface prohibited olivine dissolution. This was overcome by the water retention capacities of both the WT and mutant biofilm: the olivine surface underneath subaerial fungal biofilms was as weathered as the corresponding subaquatic olivine surface. Under the studied environmental settings, the effect of fungal biofilms on olivine weathering seems to be universal, independent of the production of melanin, the composition of extracellular polymeric substances (EPS) or air-exposure. KW - Bio-weathering KW - Forsterite KW - Extracellular polymeric substances KW - Melanin KW - Black fungi PY - 2021 DO - https://doi.org/10.1016/j.chemgeo.2020.119902 VL - 559 SP - 119902 PB - Elsevier B.V. AN - OPUS4-51403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alder-Rangel, A. A1 - Idnurm, A. A1 - Brand, A. A1 - Brown, A. A1 - Gorbushina, Anna A1 - Kelliher, C. A1 - Campos, C. A1 - Levin, D. A1 - Bell-Pedersen, D. A1 - Dadachova, E. A1 - Bauer, F. A1 - Gadd, G. A1 - Braus, G. A1 - Braga, G. A1 - Brancini, G. A1 - Walker, G. A1 - Druzhinina, I. A1 - Pocsi, I. A1 - Dijksterhuis, J. A1 - Aguirre, J. A1 - Hallsworth, J. A1 - Schumacher, Julia A1 - Ho Wong, K. A1 - Selbmann, L. A1 - Corrochano, L. A1 - Kupiec, M. A1 - Momany, M. A1 - Molin, M. A1 - Requena, N. A1 - Yarden, O. A1 - Cordero, R. A1 - Fischer, R. A1 - Pascon, R. A1 - Mancinelli, R. A1 - Emri, T. A1 - Basso, T. A1 - Rangel, D. T1 - The Third International Symposium on Fungal Stress - ISFUS N2 - Stress is a normal part of life for fungi, which can survive in environments considered inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, survive in, and transform the environment, even under severe stresses, many researchers are exploring the mechanisms that enable fungi to adapt to stress. The International Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the world who research fungal stress. This article discusses presentations given at the third ISFUS, held in Sao Jose dos Campos, Sao Paulo, Brazil in 2019, thereby summarizing the state-of-the-art knowledge on fungal stress, a field that includes microbiology, agriculture, ecology, biotechnology, medicine, and astrobiology. T2 - International Symposium on Fungal Stress (ISFUS) CY - Sao Jose dos Campos, Brazil DA - 20.05.2019 KW - Agricultural mycology KW - Fungal stress mechanisms and responses KW - Industrial mycology KW - Medical mycology PY - 2020 DO - https://doi.org/10.1016/j.funbio.2020.02.007 VL - 124 IS - 5 SP - 235 EP - 252 PB - Elsevier Ltd. AN - OPUS4-50953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - Light sensing in plant- and rock-associated black fungi N2 - Fungi that share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. But to cope with sunlight-associated stresses [e.g. high temperatures, UV radiation with associated DNA damage, accumulation of reactive oxygen species (ROS), desiccation and osmotic stresses] it is important for fungi to accurately sense and respond to changes in light. To test the hypothesis that light is an environmental cue that Ascomycota use to coordinate growth, stress responses as well as to establish pathogenic or symbiotic relationships, the photoreceptor (PR) distribution in species from different ecological niches was analysed. The genomes of black [dihydroxynaphthalene (DHN) melanin-containing] fungi from phyllosphere and exposed solid surfaces contain multiple photoreceptors (PRs). The plant pathogen Botrytis cinerea (Leotiomycetes) has a highly sophisticated photosensory and signalling system that helps to avoid light and to locate susceptible hosts. Rock-inhabiting Dothideomycetes and Eurotiomycetes including Knufia petricola possess equal numbers ofPRs along with the same set of protective pigments. This similarity between black fungi from plant and rock surfaces suggests that photoperception and -regulation are important for fungi that receive nutrients through cooperation with phototrophs. Genetic tools for manipulating K. petricola exist and will be used to test this idea. KW - Botrytis cinerea KW - DHN melanin KW - Knufia petricola KW - Phyllosphere KW - Rock biofilm PY - 2020 DO - https://doi.org/10.1016/j.funbio.2020.01.004 VL - 124 IS - 5 SP - 407 EP - 417 AN - OPUS4-50786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Lessovaia, S.N. A1 - Gerrits, Ruben A1 - Gorbushina, Anna A1 - Polekhovsky, Y.S. A1 - Dultz, S. A1 - Kopitsa, G.G. ED - Frank-Kamenetskaya, O.V. ED - Vlasov, D. ED - Panova, E.G. ED - Lessovaia, S.N. T1 - Modeling Biogenic Weathering of Rocks from Soils of Cold Environments N2 - Morphologically simple and microbially dominated ecosystems termed “biofilms” have existed on Earth for a long period of biosphere evolution. A model biofilm combining one heterotroph and one phototroph component was used in a laboratory experiment to simulate biogenic weathering with two different specimens of basic rock samples from the soil profiles. The rocks fragments from the regions of cold environments of Eurasia,where abiotic physical processes, including rock disintegration initiated by freezing–thawing cycles, represent the most probable Scenario of rock weathering, were subjected to biological colonization. The rock Fragments were represented by dolerite and metagabbro amphibolites. Polished sections of the rock samples were inoculated with the model microbiological consortium of the oligotrophic fungus and the phototrophic cyanobacteria (biofilm). After 3 month runtime of the experiment the progress of rock weathering was derived from the growth of the biofilm on the rock surfaces. The model biofilm visualization on the rock surface of polished sections illustrated their stronger development namely on dolerite in comparison with metagabbro amphibolite. The findings confirmed the higher sensitivity of dolerite to biogenic weathering due to (i) mineral association, in which quartz was absent and (ii) porosity providing higher specific surface area for biotic—abiotic interaction influenced by the occurrence of micro-porosity in the rock. KW - Biogenic weathering KW - Rock leaching KW - Fractal structure KW - Biofilm formation KW - Internal pores PY - 2020 DO - https://doi.org/10.1007/978-3-030-21614-6_27 SP - 501 EP - 515 PB - Springer AN - OPUS4-51442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life on the rocks and other hard surfaces N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish subaerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that exhibits all the characteristics of microcolonial black fungi such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis (Nai et al. 2013, Fungal Genet Biol). We developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis. The differences between the wild-type fungus and its melanin-deficient mutants were tested in geomicrobiological experiments and measured are now discussed in detail, with special accent on the possible effects of the mutation on EPS and other exuded substances. T2 - Departmental colloquium of the Tuscia University CY - Viterbo, Italy DA - 14.02.2020 KW - Ascomycetes KW - Fungal biofilms KW - Material surface colonisation KW - Genetics KW - Genomics KW - Extremophilic fungi PY - 2020 AN - OPUS4-50643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A1 - Knabe, Nicole A1 - Voigt, Oliver A1 - Heeger, Felix A1 - Schumacher, Julia T1 - A genetic toolbox for exploring the life style of the rock-inhabiting black fungus Knufia petricola N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish subaerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. The exact genetic properties that ensure their survival in extreme environments can be studied if some black fungi were amenable to genetic manipulations. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that grows moderately in axenic culture and exhibits all the characteristics of microcolonial black fungi such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis (Nai et al. 2013, Fungal Genet Biol). We developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis and expressing fluorescent reporter genes. Hence, endogenous and foreign genes can be expressed from episomal AMA1-containing plasmids and genome-integrated DNA constructs. Moderate rates of homologous recombination allow for both ectopic and targeted integrations. CRISPR-Cas9 was further validated as a strategy for obtaining selection marker-free mutants and silencing via RNA interference as an approach to study essential genes. Availability of this genetic toolbox and an annotated genome sequence of the strain A95 is paving the way for studying interactions of K. petricola with environmental stressors, material surfaces, soil matrices and phototrophic symbionts. T2 - European Conference on Fungal Genetics (ECFG15) CY - Rome, Italy DA - 17.02.2020 KW - black fungi KW - genomics KW - genetics PY - 2020 AN - OPUS4-50593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voigt, Oliver A1 - Knabe, Nicole A1 - Nitsche, Sarah A1 - Erdmann, Eileen A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - An advanced genetic toolkit for exploring the biology of the rock‑inhabiting black fungus Knufia petricola N2 - Microcolonial black fungi are a group of ascomycetes that exhibit high stress tolerance, yeast-like growth and constitutive melanin formation. They dominate a range of hostile natural and man-made environments, from desert rocks and salterns to dishwashers, roofs and solar panels. Due to their slow growth and a lack of genetic tools, the underlying mechanisms of black fungi’s phenotypic traits have remained largely unexplored. We chose to address this gap by genetically engineering the rock-inhabiting fungus Knufia petricola (Eurotiomycetes, Chaetothyriales), a species that exhibits all characteristics of black fungi. A cell biological approach was taken by generating K. petricola strains expressing green or red fluorescent protein variants. By applying: (1) traditional gene replacement; (2) gene editing and replacement via plasmid-based or ribonucleoprotein (RNP)-based CRISPR/Cas9, and (3) silencing by RNA interference (RNAi), we constructed mutants in the pathways leading to melanin, carotenoids, uracil and adenine. Stable single and double mutants were generated with homologous recombination (HR) rates up to 100%. Efficient, partially cloning-free strategies to mutate multiple genes with or without resistance cassettes were developed. This state-of-the-art genetic toolkit, together with the annotated genome sequence of strain A95, firmly established K. petricola as a model for exploring microcolonial black fungi. KW - Subaerial biofilms KW - Biodeterioration KW - Fluorescent microscopy KW - CRISPR/Cas9 KW - RNA interference PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518601 DO - https://doi.org/10.1038/s41598-020-79120-5 VL - 10 IS - 1 SP - 22021 PB - Springer Nature AN - OPUS4-51860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koester, M. A1 - Stock, S. C. A1 - Nájera, F. A1 - Abdallah, Khaled A1 - Gorbushina, Anna A1 - Prietzel, J. A1 - Matus, F. A1 - Klysubun, W. A1 - Boy, J. A1 - Kuzyakov, Y. A1 - Dippold, M. A. A1 - Spielvogel, S. T1 - From rock eating to vegetarian ecosystems — Disentangling processes of phosphorus acquisition across biomes N2 - Low-molecular-weight organic acids (LMWOAs) are crucial for the mobilization and acquisition of mineral phosphorus by plants. However, the role of LMWOAs in mobilizing organic phosphorus, which is the predominant phosphorus form in at least half of the world’s ecosystems, especially in humid climates, is unclear. The mechanisms of phosphorus mobilization by LMWOAs depend on climate, mainly precipitation, and shape the phosphorus nutrition strategies of plants. We disentangled the impact of roots and associated microorganisms on mechanisms of phosphorus cycling mediated by LMWOAs by studying soils along an ecosystem-sequence (ecosequence) from arid shrubland (~70 mm yr-1), and Mediterranean woodland (~370 mm yr-1) to humid-temperate forest (~1470 mm yr-1). Phosphorus speciation in soil was examined by X-ray absorption near edge structure analysis (XANES). LMWOAs were quantified as biological rock-weathering and organic phosphorus mobilization agents and compared to kinetics of acid phosphatase as a proxy for organic phosphorus mineralization. Calcium-bound phosphorus in topsoils decreased from 126 mg kg-1 in the arid shrubland, to 19 mg kg-1 in the Mediterranean woodland and was undetectable in the humid-temperate forest. In contrast, organic phosphorus in topsoils in close root proximity (0–2 mm distance to roots) was absent in the arid shrubland but raised to 220 mg kg-1 in the Mediterranean woodland and to 291 mg kg-1 in the humid-temperate forest. The organic phosphorus content in topsoils was 1.6 to 2.4 times higher in close root proximity (0–2 mm distance to roots) compared to bulk soil (4–6 mm distance to roots) in the Mediterranean woodland and humid-temperate forest, showing intensive phosphorus bioaccumulation in the rhizosphere. Redundancy analysis (RDA) revealed that LMWOAs were explained by the content of hydroxyapatite and variscite phosphorus-species in the arid shrubland, indicating that LMWOAs contribute to mineral weathering in this soil. LMWOA contents, phosphatase activity, and microbial biomass carbon correlated strongly with organic phosphorus in the humid-temperate forest soil, which implies a high relevance of LMWOAs for organic phosphorus recycling. In the Mediterranean woodland soil, however, oxalic acid correlated with organic phosphorus in the topsoil (suggesting phosphorus recycling), whereas in the subsoil malic and citric acid were correlated with primary and secondary phosphorus minerals (implying mineral weathering). We conclude that phosphorus acquisition and cycling depend strongly on climate and that the functions of LMWOAs in the rhizosphere change fundamentally along the precipitation gradient. In the arid shrubland LMWOAs facilitate biochemical weathering (rock eating), while in the humid-temperate forest their functions change towards supporting organic phosphorus recycling (vegetarian). KW - Rhizosphere processes KW - Phosphorus K-edge-XANES spectroscopy KW - Low-molecular-weight organic substances KW - Organic phosphorus breakdown KW - Biogenic weathering KW - Climate gradient PY - 2020 DO - https://doi.org/10.1016/j.geoderma.2020.114827 VL - 388 SP - 114827 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-51931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -