TY - JOUR A1 - Plarre, Rüdiger T1 - Eine kleine kleine Natur- und Kulturgeschichte der Kleidermotte (Tineola bisselliella) N2 - A short natural and cultural history of the webbing clothes moth (Tineola bisselliella). It is generally accepted that the natural habitats of most pest insects can be found outside the synanthropic environment in layers of leaf litter, under bark, as well as in rodent or bird nests. Indeed, most of the common fabric pests have been reported as being facultative nidicolous. Therefore, infestation of commodities by pest insects out of these reservoirs is one possibility to be considered. However, the likelihood of a pest´s occurrence and survival outside of the synanthropic habitat largely depends on its ecological potential and competitiveness against other species of the same ecological guild. Some pest species are rarely found in wild habitats, especially in those regions where they are not native and where they have been introduced by man. The fabric pest Tineola bisselliella serves as a good example. Most likely originating from Central or Southern Africa, this insect was introduced into Europe probably not earlier than the late 18th century. Being more tolerant to dry environments than other fabric pests, its economical importance increased during the 20th century when the indoor climate changed because of central heating systems. Its occurrence in outdoor natural habitats must be regarded as accidental. Reported finds of webbing clothes moth larvae in bird nests e. g. have been largely overstated in the literature. Tineola bisselliella should be regarded as an invasive and eusynanthropic species in most parts of the world. KW - Textilschädling KW - Museumsschädling KW - Anpassung KW - Evolution PY - 2018 SN - 0037-5942 VL - Neue Folge 53 SP - 43 EP - 57 PB - Gesellschaft Naturforschender Freunde zu Berlin CY - Berlin AN - OPUS4-44048 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Plarre, Rüdiger T1 - Resultiert normgerechte Ausführung verlässlich in hoher Qualität? N2 - Normgerechte Ausführung resultiert in Qualität, aber sie ist nicht allein ein Garant auch für hohe Qualität. Hierfür sind begleitend immer auch nachgeordnete Richtlinien wie z. B. spezifische Gütekriterien zu erfüllen. Der Vortrag erklärt die Normungsarbeit auf nationaler und internationaler Ebene und schildert die Stärken aber auch die Schwächen bei der Erstellung von Normen. Dabei ist die Konsensbildung zwischen unterschiedlichen interessierten Kreisen mit deren Partikularinteressen oftmals ein Hindernis, das aber über Zusatzvereinbarungen und der Norm nachgeordneten Regeln überwunden werden kann. T2 - Tagung des Deutschen Holzschutzfachverbandes für Ausenholzprodukte CY - Berlin, Germany DA - 19.01.2018 KW - Normung KW - DIN KW - CEN KW - ISO KW - Gütezeichen PY - 2018 AN - OPUS4-43852 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maul, Ronald A1 - Borzekowski, Antje A1 - Drewitz, Tatjana A1 - Keller, Julia A1 - Pfeifer, Dietmar A1 - Kunte, Hans-Jörg A1 - Koch, Matthias A1 - Rohn, S. T1 - Biosynthesis of zearalenone conjugates by fungi N2 - Zearalenone (ZEN) and its sulfate and glucoside conjugates have been detected in (a broad variety of) food and feed commodities1. Both conjugated derivatives are formed as part of fungal or plant secondary metabolism and thus, belong to the group of modified mycotoxins2. After consumption of contaminated foodstuff, the conjugates can be hydrolyzed by human intestinal microbiota leading to liberation of ZEN that implies an underestimation of the true ZEN exposure. In order to include ZEN conjugates in routine analysis, as well as for toxicological investigation reliable standards are needed. The objective of the present study was to develop a simple and economic method for biosynthesis of ZEN conjugates. Preceding experiments on the biotransformation of ZEN by Rhizopus and Aspergillus species showed a mixed metabolite formation3. Therefore, these known ZEN conjugating fungal strains were screened for their potential to selectively synthesize the ZEN derivatives ZEN-14-sulfate (Z14S), ZEN-14-glucoside (Z14G) and ZEN-16-glucoside (Z16G). The screening was conducted by adding ZEN to liquid fungal cultures. Cultivation conditions and ZEN incubation time were varied. All media samples were analyzed for metabolite formation by HPLC-MS/MS. Z14S was exclusively formed by A. oryzae. Under optimized conditions a specific biosynthesis of Z14G by R. oryzae and Z16G by R. oligosporus was achieved. After liquid-liquid-extraction and preparative chromatographic cleanup 1H-NMR purities of ≥ 73% for Z14S, ≥ 82% for Z14G and ≥ 50% for Z16G were obtained. In addition, a consecutive biosynthesis was developed by first using Fusarium graminearum for ZEN biosynthesis on rice based liquid medium. After inactivation of Fusarium the subsequent conjugation reaction was conducted utilizing Aspergillus and Rhizopus species under the various optimized conditions. In this study an easy and cost-efficient biosynthesis for Z14S, Z14G and Z16G was developed. The developed biosynthesis could be also used for other metabolites like ZEL conjugates. Our results of the in vitro screening indicate also the formation of a ZEL-glucoside and α ZEL-sulfate as major metabolites by R. oryzae. In sum, under optimized cultivation conditions fungi can be easily utilized for a targeted and stereospecific synthesis of ZEN conjugates. T2 - 10th World Mycotoxin Forum Conference CY - Amsterdam, The Netherlands DA - 12.03.2018 KW - Mycotoxins KW - Food safety KW - Analytical standards PY - 2018 AN - OPUS4-44547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schreiber, Frank A1 - Zimmermann, M. A1 - Escrig, S. A1 - Lavik, G. A1 - Kuypers, M.M.M. A1 - Meibom, A. A1 - Ackermann, M. T1 - Substrate and electron donor limitation induce phenotypic heterogeneity in different metabolic activities in a green sulphur bacterium N2 - Populations of genetically identical cells can display marked variation in phenotypic traits; such variation is termed phenotypic heterogeneity. Here, we investigate the effect of substrate and electron donor limitation on phenotypic heterogeneity in N2 and CO2 fixation in the green sulphur bacterium Chlorobium phaeobacteroides. We grew populations in chemostats and batch cultures and used stable isotope labelling combined with nanometer‐scale secondary ion mass spectrometry (NanoSIMS) to quantify phenotypic heterogeneity. Experiments in H2S (i.e. electron donor) limited chemostats show that varying levels of NH4+ limitation induce heterogeneity in N2 fixation. Comparison of phenotypic heterogeneity between chemostats and batch (unlimited for H2S) populations indicates that electron donor limitation drives heterogeneity in N2 and CO2 fixation. Our results demonstrate that phenotypic heterogeneity in a certain metabolic activity can be driven by different modes of limitation and that heterogeneity can emerge in different metabolic processes upon the same mode of limitation. In conclusion, our data suggest that limitation is a general driver of phenotypic heterogeneity in microbial populations. KW - NanoSIMS KW - Phenotypic heterogeneity PY - 2018 UR - https://onlinelibrary.wiley.com/doi/abs/10.1111/1758-2229.12616 U6 - https://doi.org/10.1111/1758-2229.12616 SN - 1758-2229 VL - 10 IS - 2 SP - 179 EP - 183 PB - John Wiley & Sons Ltd AN - OPUS4-44596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Phenotypic diversity in microbial metabolism and antimicrobial resistance N2 - Most microorganisms live in environments where nutrients are limited and fluctuate over time. Cells respond to nutrient fluctuations by sensing and adapting their physiological state. Recent studies suggest phenotypic heterogeneity in isogenic populations as an alternative strategy in fluctuating environments, where a subpopulation of cells express a function that allows growth under conditions that might arise in the future. It is unknown how environmental factors such as nutrient limitation shape phenotypic heterogeneity in metabolism and whether this allows cells to respond to nutrient fluctuations. Here, we show that substrate limitation increases phenotypic heterogeneity in metabolism, and this heterogeneity allows cells to cope with substrate fluctuations. We subjected the N2-fixing bacterium Klebsiella oxytoca to different levels of substrate limitation and substrate shifts, and obtained time-resolved single-cell measurements of metabolic activities using nanometre-scale secondary ion mass spectrometry (NanoSIMS). We found that the level of NH4+ limitation shapes phenotypic heterogeneity in N2 fixation. In turn, the N2 fixation rate of single cells during NH4+ limitation correlates positively with their growth rate after a shift to NH4+ depletion, experimentally demonstrating the benefit of heterogeneity. The results indicate that phenotypic heterogeneity is a general solution to two important ecological challenges - nutrient limitation and fluctuations - that many microorganisms face. Currently, we use NanoSIMS to develop a new approach that defines functionally-relevant, phenotypic biodiversity in microbial systems. In the last part of my presentation, I will highlight why the concept of phenotypic diversity is relevant for the understanding of antimicrobial resistance. T2 - Berlin Seminar for Resistance Research at FU Berlin Veterinary Medicine CY - Berlin, Germany DA - 01.03.2018 KW - Antimicrobial Resistance KW - Metabolism KW - Phenotypic diversity PY - 2018 AN - OPUS4-44597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Surface characterisation of biofilms by nearambient pressure X-ray photoelectron spectroscopy N2 - The XPS information depth of approximately 10 nm is in the same size range as the outer membrane of the gram-negative bacteria, which makes XPS a suitable tool for determining the elemental composition of the bacterial surface and monitor changes caused by outer stress like dehydration or exposure to antimicrobials. However, bacteria are inherently in a hydrated state, and therefore only compatible to ultra-high vacuum after extensive sample preparation, which may degrade the sample constituents. This issue is addressed by the development of near-ambient pressure (NAP)-XPS, which enables bacteria and biofilms to be characterised in their native wet state. Artificial biofilms, bacteria and biofilms of Escherichia coli have been characterised with the laboratory NAP-XPS instrument EnviroESCA from SPECS GmbH, at pressures ranging from high vacuum to 12 mbar, and in both humid and dry environment. By studying biological samples in their native wet state, new insight about composition and transport of drugs through cell membranes and the extracellular polymeric substance (EPS) of biofilms can be obtained. T2 - Royal Society of Chemistry Twitter Conference CY - Worldwide (online conference) DA - 06.03.2018 KW - Biofilms KW - E. coli KW - Alginate KW - NAP-XPS PY - 2018 AN - OPUS4-44498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Surface characterisation of bacteria and biofilms by NAP-XPS N2 - The XPS information depth of approximately 10 nm is in the same size range as the outer membrane of the gram-negative bacteria, which makes XPS a suitable tool for determining the elemental composition of the bacterial surface and monitor changes caused by outer stress like dehydration or exposure to antimicrobials. However, bacteria are inherently in a hydrated state, and therefore only compatible to ultra-high vacuum after extensive sample preparation, which may degrade the sample constituents. This issue is addressed by the development of near-ambient pressure (NAP)-XPS, which enables bacteria and biofilms to be characterised in their native wet state. Artificial biofilms, bacteria and biofilms of Escherichia coli have been characterised with the laboratory NAP-XPS instrument EnviroESCA from SPECS GmbH, at pressures ranging from high vacuum to 12 mbar, and in both humid and dry environment. By studying biological samples in their native wet state, new insight about composition and transport of drugs through cell membranes and the extracellular polymeric substance (EPS) of biofilms can be obtained. In this contribution, the latest progress on biofilm characterisation by NAP-XPS will be presented, and measurement capabilities and limitations will be discussed. T2 - Die Frühjahrstagung der Deutsche Physikalische Gesellschaft CY - Berlin, Germany DA - 12.03.2018 KW - Biofilms KW - E. coli KW - Alginate KW - NAP-XPS PY - 2018 AN - OPUS4-44500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Dietrich, P. A1 - Beblo-Vranesevic, K. A1 - Kjærvik, Marit A1 - Unger, Wolfgang A1 - Schwibbert, Karin A1 - Hardie, K. A1 - Brown, J. T1 - XPS surface analysis of bacterial samples N2 - This application note presents how EnviroESCA can be used to analyze bacterial samples under near ambient pressure conditions in various states of hydration using different levels of humidity. Such investigations of bacterial cell wall surfaces in their hydrated state are essential for studying biological interfaces at work. The use of innovative near-ambient pressure (NAP-)XPS instrumentation allows the detailed analysis of irregularly-surfaced biofilms. NAP-XPS enables the surface analysis of bacterial samples in their natural hydrated state without complex sample preparation techniques such as freeze-drying or fast-freezing, which are needed for XPS analysis in ultrahigh vacuum. KW - Near ambient pressure XPS KW - Biofilms PY - 2018 UR - http://www.enviroai.com/uploads/1/0/2/8/102861712/xps_surface_analysis_of_bacillus_subtilis_biofilms_final.pdf IS - Application Note #000399 SP - 1 EP - 5 CY - Berlin AN - OPUS4-44588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin A1 - Unger, Wolfgang T1 - Quantitative biocide profile measurements by calibrated NAP-XPS N2 - Progress update for the EMPIR-project MetVBadBugs- Quantitative measurement and imaging of drug-uptake by bacteria with antimicrobial resistance. T2 - MetVBadBugs 26 M project meeting CY - South Mimms, UK DA - 05.07.2018 KW - Biofilms KW - Alginate KW - Antibiotics KW - E. coli KW - XPS PY - 2018 AN - OPUS4-45402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Surface characterisation of Escherichia coli under various conditions by near-ambient pressure XPS N2 - Bacteria are inherently in a hydrated state and therefore not compatible to ultra-high vacuum techniques such as XPS without prior sample preparation involving freeze drying or fast freezing. This has changed with the development of near-ambient pressure (NAP)-XPS, which makes it possible to characterise the bacterial surface with minimal sample preparation. This paper presents NAP-XPS measurements of Escherichia coli under various NAP conditions: at 11 mbar in a humid environment, at 2 mbar after drying in the chamber, pre-dried at 4 mbar, and at 1 mbar after overnight pumping at 10^−4 mbar. The high-resolution spectra of carbon, nitrogen, and oxygen are presented and found to be in general agreement with XPS measurements from freeze-dried and fast-frozen bacteria. However, it was found that the amount of carbon components associated with polysaccharides increases relative to aliphatic carbon during drying and increases further after overnight pumping. This implies that drying has an impact on the bacterial surface. T2 - European conference on applications of surface and interface analysis (ECASIA'17) CY - Montpellier, France DA - 24.09.2018 KW - Bacteria KW - E. coli KW - NAP-XPS PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-454047 SN - 0142-2421 SN - 1096-9918 VL - 50 IS - 11 SP - 996 EP - 1000 PB - John Wiley & Sons CY - Hoboken, New Jersey, USA AN - OPUS4-45404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -