TY - JOUR A1 - Nilsson, R. H. A1 - Taylor, A. F. S. A1 - Adams, R. I. A1 - Baschien, C. A1 - Bengtsson-Palme, J. A1 - Cangren, P. A1 - Coleine, C. A1 - Iršėnaitė, R. A1 - Martin-Sanchez, Pedro Maria A1 - Meyer, W. A1 - Oh, S.-Y. A1 - Sampaio, J. P. A1 - Seifert, K. A. A1 - Sklenář, F. A1 - Stubbe, D. A1 - Suh, S.-O. A1 - Summerbell, R. A1 - Svantesson, S. A1 - Unterseher, M. A1 - Visagie, C. M. A1 - Weiss, M. A1 - Woudenberg, J. HC. A1 - Wurzbacher, C. A1 - Van den Wyngaert, S. A1 - Yilmaz, N. A1 - Yurkov, A. A1 - Kõljalg, U. A1 - Abarenkov, K. A1 - Daniel, H.-M. A1 - Glassman, S. I. A1 - Hirooka, H. A1 - Irinyi, L. T1 - Taxonomic annotation of public fungal ITS sequences from the built environment – a report from an April 10–11, 2017 workshop (Aberdeen, UK) N2 - Recent DNA-based studies have shown that the built environment is surprisingly rich in fungi. These indoor fungi – whether transient visitors or more persistent residents – may hold clues to the rising levels of human allergies and other medical and building-related health problems observed globally. The taxo¬nomic identity of these fungi is crucial in such pursuits. Molecular identification of the built mycobiome is no trivial undertaking, however, given the large number of unidentified, misidentified, and technically compromised fungal sequences in public sequence databases. In addition, the sequence metadata required to make informed taxonomic decisions – such as country and host/substrate of collection – are often lacking even from reference and ex-type sequences. Here we report on a taxonomic annotation workshop (April 10–11, 2017) organized at the James Hutton Institute/University of Aberdeen (UK) to facilitate reproducible studies of the built mycobiome. The 32 participants went through public fungal ITS bar¬code sequences related to the built mycobiome for taxonomic and nomenclatural correctness, technical quality, and metadata availability. A total of 19,508 changes – including 4,783 name changes, 14,121 metadata annotations, and the removal of 99 technically compromised sequences – were implemented in the UNITE database for molecular identification of fungi (https://unite.ut.ee/) and shared with a range of other databases and downstream resources. Among the genera that saw the largest number of changes were Penicillium, Talaromyces, Cladosporium, Acremonium, and Alternaria, all of them of significant importance in both culture-based and culture-independent surveys of the built environment. KW - Indoor mycobiome KW - Built environment KW - Molecular identification KW - Fungi KW - Taxonomy KW - Systematics KW - Sequence annotation KW - Metadata KW - Open data PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-438949 SN - 1314-4049 SN - 1314-4057 VL - 28 SP - 65 EP - 82 PB - Pensoft Publishers CY - Washington, DC AN - OPUS4-43894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - C., Ruibal A1 - L., Selbmann A1 - Serap, Avci A1 - Martin-Sanchez, Pedro Maria A1 - Gorbushina, Anna ED - Gorbushina, Anna T1 - Roof-Inhabiting Cousins of Rock-Inhabiting Fungi: Novel Melanized Microcolonial Fungal Species from Photocatalytically Reactive Subaerial Surfaces N2 - Subaerial biofilms (SAB) are an important factor in weathering, biofouling, and biodeterioration of bare rocks, building materials, and solar panel surfaces. The realm of SAB is continually widened by modern materials, and the settlers on these exposed solid surfaces always include melanized, stress-tolerant microcolonial ascomycetes. After their first discovery on desert rock surfaces, these melanized chaetothyrialean and dothidealean ascomycetes have been found on Mediterranean monuments after biocidal treatments, Antarctic rocks and solar panels. New man-made modifications of surfaces (e.g., treatment with biocides or photocatalytically active layers) accommodate the exceptional stress-tolerance of microcolonial fungi and thus further select for this well-protected ecological group. Melanized fungal strains were isolated from a microbial community that developed on highly photocatalytic roof tiles after a long-term environmental exposure in a maritime-influenced region in northwestern Germany. Four of the isolated strains are described here as a novel species, Constantinomyces oldenburgensis, based on multilocus ITS, LSU, RPB2 gene phylogeny. Their closest relative is a still-unnamed rock-inhabiting strain TRN431, here described as C. patonensis. Both species cluster in Capnodiales, among typical melanized microcolonial rock fungi from different stress habitats, including Antarctica. These novel strains flourish in hostile conditions of highly oxidizing material surfaces, and shall be used in reference procedures in material testing. KW - Microcolonial fungi KW - Multilocus phylogeny KW - Photocatalytic surfaces KW - Subaerial biofilms KW - Stress tolerance KW - Constantinomyces PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-455182 VL - 8 IS - 3 SP - 30 EP - 44 PB - MDPI CY - Basel, Schweiz AN - OPUS4-45518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martin-Sanchez, Pedro Maria A1 - Gebhardt, Christopher A1 - Toepel, Jörg A1 - Barry, J. A1 - Munzke, N. A1 - Günster, Jens A1 - Gorbushina, Anna T1 - Monitoring microbial soiling in photovoltaic systems: A qPCR-based approach N2 - Soiling of photovoltaic (PV) systems compromises their performance causing a significant power loss and demanding periodical cleaning actions. This phenomenon raises great concerns in the solar energy field, thus leading to notable research efforts over the last decades. Soiling is caused by a dual action of dust deposition and biofouling. However, surprisingly, the microbiological contribution to PV soiling is often overlooked or underestimated. In this study, a variety of qPCR-based methods have been developed to quantify the microbial load of fungi, bacteria and phototrophs on PV panels. These protocols were evaluated by comparison with culturedependent methods, and were implemented with real solar plants for two years. The results show that the developed molecular methods are highly sensitive and reliable to monitor the microbial component of the soiling. Fungal biomass was clearly dominant in all analysed PV modules, while bacteria and phototrophs showed much lower abundance. Light microscopy and qPCR results revealed that melanised microcolonial fungi and phototrophs are the main biofilm-forming microorganisms on the studied solar panels. In particular, the fungal qPCR protocol is proposed as a useful tool for monitoring of PV soiling, and investigating the microbial contribution to specific soiling cases. KW - Solar panels KW - PV modules KW - Real-time qPCR KW - Bacteria KW - Fungi KW - Phototrophs PY - 2018 U6 - https://doi.org/10.1016/j.ibiod.2017.12.008 SN - 0964-8305 VL - 129 SP - 13 EP - 22 PB - Elsevier Science AN - OPUS4-43892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -