TY - CONF A1 - Zubia Aranburu, Judith A1 - Cappella, Brunero A1 - Zabala Eguren, A. A1 - Buruaga Lamarain, L. A1 - Aginagalde Lopez, A. A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Quantification of the adhesion force of E. coli on Ti via single-cell force spectroscopy N2 - Antibiotic resistance is a growing global problem which poses a massive threat to human health. Although human activity contributes to the acceleration of the process, bacteria have a self-driven stabilisation mechanism to protect themselves from such and other external threats: biofilm formation. Nonetheless, it is the adhesion of a single bacterial cell to a surface that triggers the formation of such network of biomolecules and microorganisms, as well as its hazardous consequences. The main objective of this work was to quantify the adhesion force of a single E. coli cell on a Ti substrate via the AFM-related single-cell force spectroscopy, with both the cell and the substrate material being of high clinical relevance. A set of 25 x 25 force displacement curves was acquired with a maximum force of 3.2 nN without dwell time, yielding a topography map and an adhesion force map that showed to be correlated. A mean adhesion force of 0.85 ± 0.175 nN was measured and the presence of cell appendages on the bacterial cell wall was verified through individual force-displacement curves. Bacterial viability was assessed after the measurements via live/dead staining. T2 - XL Congreso Anual de la Sociedad Española de Ingeniería Biomédica CASEIB 2022 CY - Valladolid, Spain DA - 23.11.2022 KW - Bacteria KW - Atomic force microscopy KW - Force distance curve PY - 2022 SN - 978-84-09-45972-8 SP - 217 EP - 220 AN - OPUS4-57039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wurzler, Nina A1 - Wagner, Ralph A1 - Schutter, Jan David A1 - Das, Chayanika A1 - Dimper, Matthias A1 - An, Biwen A1 - Koerdt, Andrea A1 - Lützenkirchen-Hecht, Dirk A1 - Özcan Sandikcioglu, Özlem T1 - Effect of cultivation conditions on the electrochemical activity of metal reducing bacteria (mrb) on stainless steel surfaces N2 - Investigation of the electrochemical activity of two cultures grown with and without abundance of Fe(III) and their different ability to reduce and therefore dissolve iron oxides in steel and model iron thin films. T2 - Eurocorr2019 CY - Sevilla, Spain DA - 09.09.2019 KW - X-ray spectroscopic techniques KW - Microbiologically influenced corrosion KW - MIC KW - XANES KW - Metal reducing bacteria KW - In situ PY - 2019 AN - OPUS4-49692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wurzler, Nina A1 - Kleinbub, Sherin A1 - Koerdt, Andrea A1 - Özcan Sandikcioglu, Özlem T1 - Effect of conditioning layers on the attachment and biofilm formation of electroactive bacteria on stainless steel N2 - The characteristics of different molecules chosen as representatives for specific functionalities in conditioning layers play an important role on attachment behavior and later biofilm formation of bacteria. The chemical composition is a major component influencing the attachment but there is a conglomerate of influences. T2 - Eurocorr2018 CY - Krakow, Poland DA - 09.09.2018 KW - Conditioning layer KW - Stainless steel KW - Bacterial attachment PY - 2018 AN - OPUS4-46487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völzke, Jule L. A1 - Hodjat Shamami, Parya A1 - Gawlitza, Kornelia A1 - Feldmann, Ines A1 - Zimathies, Annett A1 - Meyer, Klas A1 - Weller, Michael G. T1 - High-Purity Corundum as Support for Affinity Extractions from Complex Samples N2 - Nonporous corundum powder, known as an abrasive material in the industry, was functionalized covalently with protein binders to isolate and enrich specific proteins from complex matrices. The materials based on corundum were characterized by TEM, ESEM, BET, DLS, EDS, and zeta potential measurements. The strong Al-O-P bonds between the corundum surface and amino phosphonic acids were used to introduce functional groups for further conjugations. The common crosslinker glutaraldehyde was compared with a hyperbranched polyglycerol (PG) of around 10 kDa. The latter was oxidized with periodate to generate aldehyde groups that can covalently react with the amines of the surface and the amino groups from the protein via a reductive amination process. The amount of bound protein was quantified via aromatic amino acid analysis (AAAA). This work shows that oxidized polyglycerol can be used as an alternative to glutaraldehyde. With polyglycerol, more of the model protein bovine serum albumin (BSA) could be attached to the surface under the same conditions, and lower non-specific binding (NSB) was observed. As a proof of concept, IgG was extracted with protein A from crude human plasma. The purity of the product was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). A binding capacity of 1.8 mg IgG per gram of corundum powder was achieved. The advantages of corundum include the very low price, extremely high physical and chemical stability, pressure resistance, favorable binding kinetics, convenient handling, and flexible application. KW - Corundum KW - Sapphire KW - Affinity chromatography KW - Antibodies KW - Self-assembled monolayers (SAM) KW - Polyglycerol KW - Dendrimer KW - Nonspecific binding (NSB) KW - Purification KW - Solid-phase extraction (SPE) PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-559342 VL - 9 IS - 9 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-55934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Völzke, Jule L. A1 - Hodjat Shamami, P. A1 - Gawlitza, Kornelia A1 - Feldmann, Ines A1 - Zimathies, Annett A1 - Weller, Michael G. T1 - High-purity corundum as support for affinity extractions from complex samples N2 - Nonporous corundum powder, known as an abrasive material in the industry, was functionalized covalently with protein binders to isolate and enrich specific proteins from complex matrices. The materials based on corundum were characterized by TEM, ESEM, BET, DLS, and zeta potential measurements. The strong Al-O-P bonds between the corundum surface and amino phosphonic acids are used to introduce functional groups for further conjugations. The common cross-linker glutaraldehyde was compared with a hyperbranched polyglycerol (PG) of around 10 kDa. The latter is oxidized with periodate to generate aldehyde groups that can covalently react with the amines of the surface and the amino groups from the protein via a reductive amination process. The amount of bound protein was quantified via aromatic amino acid analysis (AAAA). This work shows that oxidized polyglycerol can be used as an alternative to glutaraldehyde. With polyglycerol, more of the model protein bovine serum albumin (BSA) could be attached to the surface under the same conditions, and lower nonspecific binding (NSB) was observed. As a proof of concept, IgG was extracted with protein A from crude human plasma. The purity of the product was examined by SDS-PAGE. A binding capacity of 1.8 mg IgG per g of corundum powder was achieved. The advantages of corundum are the very low price, extremely high physical and chemical stability, pressure resistance, favorable binding kinetics, and flexible application. KW - Protein KW - Bioseparation KW - Purification KW - Immunoprecipitation KW - Affinity chromatography KW - Polyglycerol KW - Glutaraldehyde KW - Linker KW - Bioconjugation KW - Self-assembled monolayer (SAM) KW - Periodate oxidation KW - Reductive amination KW - Antibodies KW - Igg KW - Immunoglobulins KW - Carrier KW - Solid phase KW - Hyperbranched polymer KW - Aromatic amino acid analysis aaaa PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-555142 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-55514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Jule L. A1 - Hodjat Shamami, Parya A1 - Gawlitza, Kornelia A1 - Feldmann, Ines A1 - Zimathies, Annett A1 - Meyer, Klas A1 - Weller, Michael G. T1 - Corundum as a novel affinity platform for the isolation of human IgG from plasma N2 - Nonporous corundum powder was functionalized covalently with protein binders to isolate and enrich specific proteins from complex matrices.The common crosslinker glutaraldehyde was compared with a hyperbranched polyglycerol (PG) of around 10 kDa. The latter was oxidized with periodate to generate aldehyde groups that can covalently react with the amines of the surface and the amino groups from the protein via a reductive amination process. The amount of bound protein was quantified via aromatic amino acid analysis (AAAA). As a proof of concept, IgG was extracted with protein A from crude human plasma. The advantages of corundum include the very low price, extremely high physical and chemical stability, pressure resistance, favorable binding kinetics, convenient handling, and flexible application. T2 - Adlershofer Forschungsforum 2022 CY - Berlin, Germany DA - 11.11.2022 KW - Affinity support KW - Affinity chromatography KW - Affinity extraction KW - Phosphonic acids KW - Polyglycerol KW - Reductive amination KW - Amino acid analysis KW - Tyrosine KW - Protein quantification KW - SDS-PAGE KW - Antibodies KW - Antibody purification KW - Downstream processing KW - Bovine serum albumin KW - BSA KW - Protein a KW - TEM KW - ESEM KW - Aluminum oxide KW - Sapphire KW - Human plasma KW - Protein immobilization KW - Protein hydrolysis KW - Glutaraldehyde KW - Aromatic amino acid analysis AAAA PY - 2022 AN - OPUS4-56154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin A1 - Stephan, Ina A1 - Huebert, Thomas A1 - Kemnitz, E. T1 - Nano metal fluorides for wood protection against fungi N2 - Wood treated with nano metal fluorides is found to resist fungal decay. Sol−gel synthesis was used to synthesize MgF2 and CaF2 nanoparticles. Electron microscopy images confirmed the localization of MgF2 and CaF2 nanoparticles in wood. Efficacy of nano metal fluoride-treated wood was tested against brown-rot fungi Coniophora puteana and Rhodonia placenta. Untreated wood specimens had higher mass losses (∼30%) compared to treated specimens, which had average mass loss of 2% against C. puteana and 14% against R. placenta, respectively. Nano metal fluorides provide a viable alternative to current wood preservatives. KW - Brown-rot fungi KW - Coniophora puteana KW - Fluoride nanoparticles KW - Fluorolytic sol−gel KW - Rhodonia placenta KW - SEM wood characterization KW - Wood protection PY - 2018 U6 - https://doi.org/10.1021/acsanm.8b00144 SN - 2574-0970 VL - 2018 SP - 1 EP - 6 PB - American Chemical Society (ACS) CY - Washington DC, US AN - OPUS4-44730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin M. A1 - Plarre, Rüdiger A1 - Hübert, Thomas A1 - Kemnitz, E. ED - Richter, K. ED - Van de Kulien, J.-W. T1 - Termite resistance of pine wood treated with nano metal fluorides N2 - Fluorides are well-known as wood preservatives. One of the limitations of fluoride-based wood preservatives is their high leachability. Alternative to current fluoride salts such as NaF used in wood protection are low water-soluble fluorides. However, impregnation of low water-soluble fluorides into wood poses a challenge. To address this challenge, low water-soluble fluorides like calcium fluoride (CaF2) and magnesium fluoride (MgF2) were synthesized as nanoparticles via the fluorolytic sol−gel synthesis and then impregnated into wood specimens. In this study, the toxicity of nano metal fluorides was assessed by termite mortality, mass loss and visual analysis of treated specimens after eight weeks of exposure to termites, Coptotermes formosanus. Nano metal fluorides with sol concentrations of 0.5 M and higher were found to be effective against termites resulting in 100% termite mortality and significantly inhibited termite feeding. Among the formulations tested, the least damage was found for specimens treated with combinations of CaF2 and MgF2 with an average mass loss less than 1% and visual rating of “1”. These results demonstrate the efficacy of low water-soluble nano metal fluorides to protect wood from termite attack. KW - Holzschutzmittel KW - Nanoparticles KW - Fluorides KW - Termites PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-514325 VL - 78 SP - 493 EP - 499 PB - Springer CY - Berlin AN - OPUS4-51432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Usmani, Shirin T1 - Wood treated with nano metal fluorides - relations between composition, size, and durability N2 - In this study, nanoscopic particles of magnesium Fluoride (MgF2) and calcium fluoride (CaF2) also known as nano metal fluorides (NMFs), were evaluated for their potential to improve wood durability. Even though these fluorides are sparingly soluble, their synthesis in the form of nano-sized particles turns them into promising candidates for wood preservation. Their distinct property of low-water solubility is proposed to maintain long-lasting protection of treated wood by reducing the leaching of fluoride. Analytical methods were used to characterize the synthesized NMFs and their distribution in treated wood specimens. Transmission electron microscopy images showed that these fluoride particles are smaller than 10 nm. In nano metal fluoride (NMF) treated specimens, aggregates of these particles are uniformly distributed in the wood matrix as confirmed with scanning electron microscopy images and their corresponding energy-dispersive X-ray spectroscopy maps. The fluoride aggregates form a protective layer around the tracheid walls and block the bordered pits, thus reducing the possible flow path for water absorption into wood. This is reflected in the reduced swelling and increased hydrophobicity of wood treated with NMFs. The biocidal efficacy of NMFs was tested against brown-rot fungi (Coniophora puteanaand Rhodonia placenta), white-rot fungus (Trametes versicolor), and termites (Coptotermes formosanus). The fungal and termite tests were performed in accordance with the EN 113 (1996) and EN 117 (2012) standards, respectively. Prior to fungal tests, the NMF treated wood specimens were leached according to the EN 84 (1997)standard. Compared to untreated specimens, the NMF treated wood specimens have a higher resistance to decay caused by brown-rot fungi, white-rot fungus, and termites. Although all NMF treatments in wood reduce the mass loss caused by fungal decay, only the combined treatment of MgF2 and CaF2 has efficacy against both brown-rot fungi and white-rot fungus. Similarly, wood treated with the combined NMF formulation is the least susceptible to attack by C. formosanus.It is proposed that combining MgF2 and CaF2changes their overall solubility to promote the release of fluoride ions at the optimal concentration needed for biocidal efficacy against fungi and termites. In this thesis, it was proven that even after leaching, sufficient fluoride was present to protect NMF treated wood from fungal decay. This shows that NMFs are robust enough for above ground contact outdoor applications of wood, where permanent wetness cannot be avoided according to Use Class 3.2, as per the EN 335 (2013) standard. Also, they pose a low risk to human health and the environment because they are sparingly soluble. Since NMFs significantly reduce the decay of wood, the CO2 fixed in it will be retained for longer than in unpreserved wood. Overall, the novel results of this study show the potential of NMFs to increase the service life of building materials made from non-durable wood. KW - Termites KW - Nano metal fluorides KW - Solubility KW - Wood protection KW - Fungi PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-525108 SP - i EP - 118 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-52510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavasolyzadeh, Zeynab A1 - Tang, Peng A1 - Hahn, Marc Benjamin A1 - Hweidi, Gada A1 - Nordholt, Niclas A1 - Haag, Rainer A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - 2D and 3D Micropatterning of Mussel‐Inspired Functional Materials by Direct Laser Writing N2 - AbstractThis work addresses the critical need for multifunctional materials and substrate‐independent high‐precision surface modification techniques that are essential for advancing microdevices and sensing elements. To overcome existing limitations, the versatility of mussel‐inspired materials (MIMs) is combined with state‐of‐the‐art multiphoton direct laser writing (DLW) microfabrication. In this way, 2D and 3D MIM microstructures of complex designs are demonstrated with sub‐micron to micron resolution and extensive post‐functionalization capabilities. This study includes polydopamine (PDA), mussel‐inspired linear, and dendritic polyglycerols (MI‐lPG and MI‐dPG), allowing their direct microstructure on the substrate of choice with the option to tailor the patterned topography and morphology in a controllable manner. The functionality potential of MIMs is demonstrated by successfully immobilizing and detecting single‐stranded DNA on MIM micropattern and nanoarray surfaces. In addition, easy modification of MIM microstructure with silver nanoparticles without the need of any reducing agent is shown. The methodology developed here enables the integration of MIMs in advanced applications where precise surface functionalization is essential. KW - Direct laser writing KW - Mussel-inspired materials KW - Polyglycerol KW - Polydopamine KW - Micropatterning PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-588778 SN - 1613-6829 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-58877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -