TY - JOUR A1 - Zerbst, Uwe A1 - Hensel, Jonas T1 - Application of fracture mechanics to weld fatigue N2 - The application of fracture mechanics to the determination of the fatigue behavior of weldments is discussed with the focus on classic fatigue, i.e., the overall fatigue life and the fatigue strength in terms of an S-N curve and the endurance limit. The following issues are addressed: specific features of short fatigue crack propagation, an adequate initial crack size, multiple crack propagation and its statistical treatment as well as welding residual stresses. As an example, an approach of the authors is applied to the determination of FAT classes for a butt weld with varying weld toe geometry. KW - Weld fatigue KW - Weld toe geometry KW - Short crack propagation KW - FAT class concept PY - 2020 U6 - https://doi.org/10.1016/j.ijfatigue.2020.105801 SN - 0142-1123 VL - 139 SP - 105801 PB - Elsevier Ltd. AN - OPUS4-50991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xing, N. A1 - Höfler, T. A1 - Hearn, C. J. A1 - Nascimento, M. A1 - Camps Paradell, G. A1 - McMahon, Dino Peter A1 - Kunec, D. A1 - Osterrieder, N. A1 - Cheng, H. H. A1 - Trimpert, J. ED - Trimpert, Jakob T1 - Fast-forwarding evolution—Accelerated adaptation in a proofreading-deficient hypermutator herpesvirus N2 - Evolution relies on the availability of genetic diversity for fitness-based selection. However, most deoxyribonucleic acid (DNA) viruses employ DNA polymerases (Pol) capable of exonucleolytic proofreading to limit mutation rates during DNA replication. The relative genetic stability produced by high-fidelity genome replication can make studying DNA virus adaptation and evolution an intensive endeavor, especially in slowly replicating viruses. Here, we present a proofreading-impaired Pol mutant (Y547S) of Marek’s disease virus that exhibits a hypermutator phenotype while maintaining unimpaired growth in vitro and wild-type (WT)-like pathogenicity in vivo. At the same time, mutation frequencies observed in Y547S virus populations are 2–5-fold higher compared to the parental WT virus. We find that Y547S adapts faster to growth in originally non-permissive cells, evades pressure conferred by antiviral inhibitors more efficiently, and is more easily attenuated by serial passage in cultured cells compared to WT. Our results suggest that hypermutator viruses can serve as a tool to accelerate evolutionary processes and help identify key genetic changes required for adaptation to novel host cells and resistance to antiviral therapy. Similarly, the rapid attenuation achieved through adaptation of hypermutators to growth in cell culture enables identification of genetic changes underlying attenuation and virulence, knowledge that could practically exploited, e.g. in the rational design of vaccines. KW - Polymerase mutant KW - Proofreading deficient KW - Hypermutation KW - Adaption KW - DNA polymerase KW - Marek's Disease Virus PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-565631 SN - 2057-1577 VL - 8 IS - 2 SP - 1 EP - 11 PB - Oxford University Press CY - Oxford, UK AN - OPUS4-56563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wild, B. A1 - Gerrits, Ruben A1 - Bonneville, S. T1 - The contribution of living organisms to rock weathering in the critical zone N2 - Rock weathering is a key process in global elemental cycling. Life participates in this process with tangible consequences observed from the mineral interface to the planetary scale. Multiple lines of evidence show that microorganisms may play a pivotal—yet overlooked—role in weathering. This topic is reviewed here with an emphasis on the following questions that remain unanswered: What is the quantitative contribution of bacteria and fungi to weathering? What are the associated mechanisms and do they leave characteristic imprints on mineral surfaces or in the geological record? Does biogenic weathering fulfill an ecological function, or does it occur as a side effect of unrelated metabolic functions and biological processes? An overview of efforts to integrate the contribution of living organisms into reactive transport models is provided. We also highlight prospective opportunities to harness microbial weathering in order to support sustainable agroforestry practices and mining activities, soil remediation, and carbon sequestration. KW - Bio-weathering KW - Fungi KW - Mineral PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-566748 SN - 2397-2106 VL - 6 SP - 1 EP - 16 PB - Macmillan CY - London AN - OPUS4-56674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wen, Keqing A1 - Gorbushina, Anna A. A1 - Schwibbert, Karin A1 - Bell, Jérémy T1 - A microfluidic platform for monitoring biofilm formation in flow under defined hydrodynamic conditions N2 - Bacterial adhesion on surfaces of medical, water and food applications may lead to infections, water or food spoilage and human illness. In comparison to traditional static and macro flow chamber assays for biofilm formation studies, microfluidic chips allow in situ monitoring of biofilm formation under various flow regimes, have better environment control and smaller sample requirements. In this work, a novel microfluidic platform is developed to investigate biofilm adhesion under precisely controlled bacteria concentration, temperature, and flow conditions. This platform central unit is a single-inlet microfluidic flow cell with a 5 mm wide chamber designed and tested to achieve ultra-homogenous flow in the central area of chamber. Within this area, defined microstructures are integrated that will disturb the homogeneity of the flow, thus changing bacterial adhesion pattern. Here we present the monitoring of bacterial biofilm formation in a microfluidic chip equipped with a microstructure known as micro-trap. This feature is based on a 3D bacteria trap designed by Di Giacomo et al. and successfully used to sequester motile bacteria. At first, fluorescent particles similar in size to Escherichia coli (E. coli) are used to simulate bacteria flow inside the flow cell and at the micro-trap. The turbulences induced by the trap are analyzed by imaging and particle tracking velocimetry (PTV). Secondly, the model strain E. coli TG1, ideal and well described for biofilm studies, is used to analyze biofilm formation in the micro-trap. Therefore, a stable fluorescent strain E. coli TG1-MRE-Tn7-141 is constructed by using Tn7 transposon mutagenesis according to the method described by Schlechter et al. Sequestering of E. coli cells within the micro-trap was followed using epifluorescence microscopy. The novel microfluidic platform shows great potential for assessment of bacterial adhesion under various flow regimes. The performance of structural feature with respect to the generation of turbulences that promote or reduce bacterial adhesion can be systematically examined. The combination of flow analysis and fluorescent strain injection into the microfluidic chip shows that the micro-trap is useful for capturing bacteria at defined positions and to study how flow conditions, especially micro-turbulences, can affect biofilm formation. It represents a powerful and versatile tool for studying the relation between topography and bacteria adhesion. T2 - International Conference on Miniaturized Systems for Chemistry and Life Sciences CY - Katowice, Poland DA - 15.10.2023 KW - Biofilm KW - E. coli KW - Microfluidics KW - Velocimetry KW - Fluorescence PY - 2023 AN - OPUS4-59593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Laar, C. A1 - Baar, C. A1 - Plarre, Rüdiger A1 - McMahon, Dino Peter T1 - Genetic relationships of local infestations by Anobium punctatum, Xestobium rufovillosum and their associated predator Korynetes caeruleus from buildings in North-Eastern Germany N2 - Wood-destroying pests such as Anobium punctatum and Xestobium rufovillosum cause damage to art and cultural objects as well as to buildings. Monitoring population dynamics of pest species as well as of their naturally occurring counterparts are an essential part in the development of biological control measures as alternatives to conventional wood protection. Therefore, both the dispersal and homogeneity of pest and beneficial insect populations across multiple sites and buildings were investigated in the present study using DNA barcoding. Specifically, beetles of Anobium punctatum (de Geer 1774) (Coleoptera, Ptinidae), Xestobium rufovillosum (de Geer, 1974) (Coloeptera, Ptinidae), and Korynetes caeruleus (de Geer 1775) (Coleoptera, Cleridae) were collected from buildings at four different sites in Mecklenburg-Western Pomerania, North-Eastern Germany. DNA analysis was performed using mitochondrial cytochrome c oxidase subunit I (COI). For A. punctatum, low base pair variability was found in the gene segment studied (4-5 SNPs) within one building (Greven) and between four spatially separated sites. Conversely, in X. rufovillosum, the sequences from two sites studied were homogeneous within a site but differed between locations by nine base pair positions (SNPs). The main result of this study is that the pests A. punctatum and X. rufovillosum showed a higher variability in the investigated gene segment than the natural counterpart K. caeruleus. T2 - IRG52 Webinar on Wood Protection CY - Online meeting DA - 01.11.21 KW - Anobium punctatum KW - Xestobium rufovillosum KW - Korynetes caeruleus KW - DNA barcode PY - 2021 SN - 2000-8953 VL - 21 SP - 1 EP - 11 PB - The International Research Group on Wood Protection CY - Stockholm, Sweden AN - OPUS4-54197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voigt, Oliver A1 - Knabe, Nicole A1 - Nitsche, Sarah A1 - Erdmann, Eileen A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - An advanced genetic toolkit for exploring the biology of the rock‑inhabiting black fungus Knufia petricola N2 - Microcolonial black fungi are a group of ascomycetes that exhibit high stress tolerance, yeast-like growth and constitutive melanin formation. They dominate a range of hostile natural and man-made environments, from desert rocks and salterns to dishwashers, roofs and solar panels. Due to their slow growth and a lack of genetic tools, the underlying mechanisms of black fungi’s phenotypic traits have remained largely unexplored. We chose to address this gap by genetically engineering the rock-inhabiting fungus Knufia petricola (Eurotiomycetes, Chaetothyriales), a species that exhibits all characteristics of black fungi. A cell biological approach was taken by generating K. petricola strains expressing green or red fluorescent protein variants. By applying: (1) traditional gene replacement; (2) gene editing and replacement via plasmid-based or ribonucleoprotein (RNP)-based CRISPR/Cas9, and (3) silencing by RNA interference (RNAi), we constructed mutants in the pathways leading to melanin, carotenoids, uracil and adenine. Stable single and double mutants were generated with homologous recombination (HR) rates up to 100%. Efficient, partially cloning-free strategies to mutate multiple genes with or without resistance cassettes were developed. This state-of-the-art genetic toolkit, together with the annotated genome sequence of strain A95, firmly established K. petricola as a model for exploring microcolonial black fungi. KW - Subaerial biofilms KW - Biodeterioration KW - Fluorescent microscopy KW - CRISPR/Cas9 KW - RNA interference PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-518601 VL - 10 IS - 1 SP - 22021 PB - Springer Nature AN - OPUS4-51860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trimpert, J. A1 - Groenke, N. A1 - Kunec, D. A1 - Eschke, K. A1 - He, Shulin A1 - McMahon, Dino Peter A1 - Osterrieder, N. T1 - A proofreading-impaired herpesvirus generates populations with quasispecies-like structure N2 - RNA virus populations are composed of highly diverse individuals that form a cloud of related sequences commonly referred to as a ‘quasispecies’1–3. This diversity arises as a consequence of low-fidelity genome replication4,5. By contrast, DNA Virus populations contain more uniform individuals with similar fitness6. Genome diversity is often correlated with increased Fitness in RNA viruses, while DNA viruses are thought to require more faithful genome replication. During DNA replication, erroneously incorporated bases are removed by a 3′-5′ exonuclease, a highly conserved enzymatic function of replicative DNA but not RNA polymerases. This proofreading process enhances replication fidelity and ensures the genome integrity of DNA organisms, including large DNA viruses7. Here, we show that a herpesvirus can tolerate impaired exonucleolytic proofreading, resulting in DNA virus populations, which, as in RNA viruses8, are composed of highly diverse genotypes of variable individual fitness. This indicates that herpesvirus mutant diversity may compensate for individual Fitness loss. Notably, in vivo infection with diverse virus populations results in a marked increase in virulence compared to genetically homogenous parental virus. While we cannot exclude that the increase in virulence is caused by selection of and/or interactions between individual genotypes, our findings are consistent with quasispecies dynamics. Our results contrast with traditional views of DNA virus replication and evolution, and indicate that a substantial increase in population diversity can lead to higher virulence. KW - Marek's virus KW - Virulence KW - Quasispecies KW - Evolution PY - 2019 U6 - https://doi.org/10.1038/s41564-019-0547-x SN - 2058-5276 N1 - Corrigendum: Nature Microbiology 4 (2019) 2025 VL - 4 SP - 2175 EP - 2183 PB - Nature Publishing Group CY - London AN - OPUS4-48896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Seneschal-Merz, Karine A1 - Günther, Tobias A1 - Wilsch, Gerd T1 - Determination of boron in 19th and 20th century paint layers using LIBS N2 - 19th and 20th centuries glass paint layers consist of a colour body and a colourless lead silicate flux, in which borax or boric acid was added as further component to improve the paint ability and to reduce the firing temperature for multiple layers of paint. Model glasses were used in laboratory tests to investigate the stability of glass paints with additions of boron oxide. To determine boron in paint layers, a LIBS-system with pulsed NdYAG-laser was used. T2 - Technart 2019 CY - Brugge, Belgien DA - 07.05.2019 KW - Stained glass windows KW - Glass paints KW - LIBS PY - 2019 AN - OPUS4-48229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tonon, C. A1 - Breitenbach, Romy A1 - Voigt, Oliver A1 - Turci, F. A1 - Gorbushina, Anna A1 - Favero-Longo, S. E. T1 - Hyphal morphology and substrate porosity -rather than melanization- drive penetration of black fungi into carbonate substrates N2 - Due to their ability to penetrate, deteriorate and discolour stone surfaces, rock-inhabiting black fungi represent a remarkable issue for cultural heritage conservation. Black microcolonial fungi (MCF) can also adapt to different environmental conditions, by converting from yeast-like morphology to a peculiar meristematic development with swollen cells (torulose hyphae, TH), to extremely thin structures (filamentous hyphae, FH). Furthermore, black MCF produce protective pigments: melanin, dark pigment particularly evident on light stone surfaces, and carotenoids. Black fungi produce melanin in critical, oligotrophic conditions as well as constitutively. Melanin function is mostly related to stress resistance and the ability of fungi to generate appressorial turgor to actively penetrate plant cells in pathogenic species. An involvement of melanins in stone surface penetration has been suggested, but not experimentally proved. In this work, we tested the role of hyphal melanisation in penetration mechanisms on the model black fungus Knufia petricola A95 in lab conditions. The wild-type and three mutants with introduced targeted mutations of polyketide-synthases (melanin production) and/or phytoene dehydrogenase (carotenoid synthesis) were inoculated on artificial carbonate pellets (pressed Carrara marble powder) of different porosity. After 5, 10, 17 and 27 weeks, hyphal penetration depth and spread were quantified on periodic acid Schiff-stained cross-sections of the pellets, collecting measurements separately for TH and FH. Droplet assay of the mutants on different media were conducted to determine the role of nutrients in the development of different fungal morphologies. In our in vitro study, the hyphal penetration depth, never exceeding 200 μm, was proven to be consistent with observed penetration patterns on stone heritage carbonate substrates. Pellet porosity affected penetration patterns of TH, which developed in voids of the more porous pellets, instead than actively opening new passageways. Oppositely, the thin diameter of FH allowed their penetration independently of substrate porosity. Instead, the long-hypothesized crucial role of melanin in black MCF hyphal penetration should be rejected. TH were developed within the pellets also by melanin deficient strains, and melanized strains showed an endolithic component of non-melanized TH. FH were non-melanized for all the strains, but deeply penetrated all pellet types, with higher penetration depth probably related to their potential exploratory (nutrient-seeking) role, while TH may be more related to a resistance to surface stress factors. In the melanin deficient strains, the absence of melanin caused an increased penetration rate of FH, hypothetically related to an earlier necessity to search for organic nutrients. KW - Biodeterioration KW - Bioreceptivity KW - Black microcolonial fungi KW - Marble KW - Stone cultural heritage KW - Stress tolerance PY - 2020 U6 - https://doi.org/10.1016/j.culher.2020.11.003 VL - 48 SP - 244 EP - 253 PB - Elsevier Masson SAS CY - Paris, Amsterdam AN - OPUS4-51933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tauber, J. P. A1 - McMahon, Dino Peter A1 - Ryabov, E.V. A1 - Kunat, M. A1 - Ptaszynska, A. A. A1 - Evans, J. D. T1 - Honeybee intestines retain low yeast titers, but no bacterial mutualists, at emergence N2 - Honeybee symbionts, predominantly bacteria, play important roles in honeybee health, nutrition, and pathogen protection, thereby supporting colony health. On the other hand, fungi are often considered indicators of poor bee health, and honeybee microbiome studies generally exclude fungi and yeasts. We hypothesized that yeasts may be an important aspect of early honeybee biology, and if yeasts provide a mutual benefit to their hosts, then honeybees could provide a refuge during metamorphosis to ensure the presence of yeasts at emergence. We surveyed for yeast and fungi during pupal development and metamorphosis in worker bees using fungal-specific quantitative polymerase chain reaction (qPCR), next-generation sequencing, and standard microbiological culturing. On the basis of yeast presence in three distinct apiaries and multiple developmental stages, we conclude that yeasts can survive through metamorphosis and in naïve worker bees, albeit at relatively low levels. In comparison, known bacterial mutualists, like Gilliamella and Snodgrassella, were generally not found in pre-eclosed adult bees. Whether yeasts are actively retained as an important part of the bee microbiota or are passively propagating in the colony remains unknown. Our demonstration of the constancy of yeasts throughout development provides a framework to further understand the honeybee microbiota. KW - Fungi KW - Honeybee KW - Microbiota KW - Yeast PY - 2022 U6 - https://doi.org/10.1002/yea.3665 SN - 1097-0061 VL - 39 IS - 1-2 SP - 95 EP - 107 PB - John Wiley & Sons Ltd. CY - London, UK AN - OPUS4-53892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -