TY - JOUR A1 - Vilcinskas, A. A1 - Schwabe, M. A1 - Brinkrolf, K. A1 - Plarre, Rüdiger A1 - Wielsch, N. A1 - Vogel, H. T1 - Larvae of the clothing moth Tineola bisselliella maintain gut bacteria that secrete enzyme cocktails to facilitate the digestion of keratin N2 - The evolutionary success of insects is promoted by their association with beneficial microbes that enable the utilization of unusual diets. The synanthropic clothing moth Tineola bisselliella provides an intriguing example of this phenomenon. The caterpillars of this species have adapted to feed on keratin-rich diets such as feathers and wool, which cannot be digested by most other animals and are resistant to common digestive enzymes. Inspired by the hypothesis that this ability may be conferred by symbiotic microbes, we utilized a simple assay to detect keratinase activity and a method to screen gut bacteria for candidate enzymes, which were isolated from feather-fed larvae. The isolation of DNA from keratin-degrading bacterial strains followed by de novo genome sequencing resulted in the identification of a novel bacterial strain related to Bacillus sp. FDAARGOS_235. Genome Annotation identified 20 genes with keratinase domains. Proteomic analysis of the culture supernatant from this gut bacterium grown in non-nutrient buffer supplemented with feathers revealed several candidate enzymes potentially responsible for keratin degradation, including a thiol-disulfide oxidoreductase and multiple proteases. Our results suggest that the unusual diet of T. bisselliella larvae promotes their association with keratinolytic microorganisms and that the ability of larvae to feed on keratin can at least partially be attributed to bacteria that produce a cocktail of keratin-degrading enzymes. KW - Keratin KW - Insect biotechnology KW - Beneficial microbes KW - Symbiosis KW - Dietary adaptation KW - Tineola bisselliella PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-512309 VL - 8 IS - 9 SP - 1415 PB - MDPI AN - OPUS4-51230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwabe, M. A1 - Griep, S. A1 - Schmidtberg, H. A1 - Plarre, Rüdiger A1 - Goesmann, A. A1 - Vilcinskas, A. A1 - Vogel, H. A1 - Brinkrolf, K. T1 - Next-Generation Sequencing Analysis of the Tineola bisselliella Larval Gut Transcriptome Reveals Candidate Enzymes for Keratin Digestion N2 - The clothes moth Tineola bisselliella is one of a few insects that can digest keratin, leading to the destruction of clothing, textiles and artwork. The mechanism of keratin digestion is not yet fully understood, partly reflecting the lack of publicly available genomic and transcriptomic data. Here we present a high-quality gut transcriptome of T. bisselliella generated from larvae reared on keratin-rich and keratin-free diets. The overall transcriptome consists of 428,221 contigs that were functionally annotated and screened for candidate enzymes involved in keratin utilization. As a mechanism for keratin digestion, we identified cysteine synthases, cystathionine β-synthases and cystathionine γ-lyases. These enzymes release hydrogen sulfite, which may reduce the disulfide bonds in keratin. The dataset also included 27 differentially expressed contigs with trypsin domains, among which 20 were associated with keratin feeding. Finally, we identified seven collagenases that were upregulated on the keratin-rich diet. In addition to this enzymatic repertoire potentially involved in breaking down keratin, our analysis of poly(A)-enriched and poly(A)-depleted transcripts suggested that T. bisselliella larvae possess an unstable intestinal microbiome that may nevertheless contribute to keratin digestion KW - Insect biotechnology KW - Gene expression KW - RNA-Sequencing KW - Transcriptomics KW - Tineola bisselliella KW - Keratin PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-529902 VL - 12 IS - 8 SP - 1113 PB - MDPI AN - OPUS4-52990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oberpaul, M. A1 - Zumkeller, C. M. A1 - Culver, T. A1 - Spohn, M. A1 - Mihajlovic1, S. A1 - Leis, B. A1 - Glaeser, S. P. A1 - Plarre, Rüdiger A1 - McMahon, Dino Peter A1 - Hammann, P. A1 - Schäberle, T. F. A1 - Glaeser, J. A1 - Vilcinskas, A. T1 - High-Throughput Cultivation for the Selective Isolation of Acidobacteria From Termite Nests N2 - Microbial communities in the immediate environment of socialized invertebrates can help to suppress pathogens, in part by synthesizing bioactive natural products. Here we characterized the core microbiomes of three termite species (genus Coptotermes) and their nest material to gain more insight into the diversity of termite-associated bacteria. Sampling a healthy termite colony over time implicated a consolidated and highly stable microbiome, pointing toward the fact that beneficial bacterial phyla play a major role in termite fitness. In contrast, there was a significant shift in the composition of the core microbiome in one nest during a fungal infection, affecting the abundance of wellcharacterized Streptomyces species (phylum Actinobacteria) as well as less-studied bacterial phyla such as Acidobacteria. High-throughput cultivation in microplates was implemented to isolate and identify these less-studied bacterial phylogenetic group. Amplicon sequencing confirmed that our method maintained the bacterial diversity of the environmental samples, enabling the isolation of novel Acidobacteriaceae and expanding the list of cultivated species to include two strains that may define new species within the genera Terracidiphilus and Acidobacterium. KW - Termite-associated microbes KW - Termites KW - Coptotermes KW - Core microbiome KW - Natural products discovery KW - Acidobacteria KW - underexplored phyla KW - Social insects PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-515283 VL - 11 SP - 1 EP - 16 AN - OPUS4-51528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -