TY - JOUR A1 - Mazumdar, Tilomatta A1 - Bartholomäus, A. A1 - McMahon, Dino Peter ED - Rokas, A. T1 - Draft Genome of the Entomopathogenic Fungus Metarhizium robertsii DSM 1490 JF - MIcrobiology Resource Announcements N2 - Metarhizium robertsii DSM 1490 is a generalist entomopathogenic fungus. The mechanisms of pathogenesis of such fungi in insects like termites are not completely understood. Here, we report the draft genome sequence, as sequenced on the Oxford Nanopore platform. The genome has a GC% of 47.82 and a size of 45,688,865 bp KW - Draft Genome KW - Entomopathogenic Fungus KW - Metarhizium robertsii DSM 1490 KW - Mechanisms of pathogenesis KW - Infecting a number of insects, KW - Close proximity to colonies PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573186 DO - https://doi.org/10.1128/mra.01267-22 SN - 2576-098X VL - 2023 SP - 1 EP - 2 PB - ASM Journals CY - Nashville, USA AN - OPUS4-57318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jiang, Shixiong A1 - Marco, H. G. A1 - Scheich, Nina A1 - He, S. A1 - Wang, Z. A1 - Gäde, G. A1 - McMahon, Dino Peter T1 - Comparative analysis of adipokinetic hormones and their receptors in Blattodea reveals novel patterns of gene evolution JF - Insect Molecular Biology N2 - Adipokinetic hormone (AKH) is a neuropeptide produced in the insect corpora cardiaca that plays an essential role in mobilising carbohydrates and lipids from the fat body to the haemolymph. AKH acts by binding to a rhodopsin-like G protein-coupled receptor (GPCR), the adipokinetic hormone receptor (AKHR). In this study, we tackle AKH ligand and receptor gene evolution as well as the evolutionary origins of AKH gene paralogues from the order Blattodea (termites and cockroaches). Phylogenetic analyses of AKH precursor sequences point to an ancient AKH gene duplication event in the common ancestor of Blaberoidea, yielding a new group of putative decapeptides. In total, 16 different AKH peptides from 90 species were obtained. Two octapeptides and seven putatively novel decapeptides are predicted for the first time. AKH receptor sequences from 18 species, spanning solitary cockroaches and subsocial wood roaches as well as lower and higher termites, were subsequently acquired using classical molecular methods and in silico approaches employing transcriptomic data. Aligned AKHR open reading frames revealed 7 highly conserved transmembrane regions, a typical arrangement for GPCRs. Phylogenetic analyses based on AKHR sequences support accepted relationships among termite, subsocial (Cryptocercus spp.) and solitary cockroach lineages to a large extent, while putative post-translational modification sites do not greatly differ between solitary and subsocial roaches and social termites. Our study provides important information not only for AKH and AKHR functional research but also for further analyses interested in their development as potential candidates for biorational pest control agents against invasive termites and cockroaches. KW - Adipokinetic hormone KW - Adipokinetic hormone receptor KW - ‘Green’ pesticide KW - Neuropeptide KW - Termite PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579141 DO - https://doi.org/10.1111/imb.12861 SN - 0962-1075 SP - 1 EP - 19 PB - Wiley online library CY - London, UK AN - OPUS4-57914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aumont, Cedric A1 - Beránková, T. A1 - McMahon, Dino Peter A1 - Radek, R. A1 - Akama, P. D. A1 - Sillam-Dussès, D. A1 - Sobotnik, J. ED - Scholtz, G. T1 - The ultrastructure of the rostral gland in soldiers of Verrucositermes tuberosus (Blattodea: Termitidae: Nasutitermitinae) JF - Arthropod Structure & Development N2 - The soil-feeding habit is an evolutionary novelty found in some advanced groups of termites. The study of such groups is important to revealing interesting adaptations to this way-of-life. The genus Verrucositermes is one such example, characterized by peculiar outgrowths on the head capsule, antennae and maxillary palps, which are not found in any other termite. These structures have been hypothesized to be linked to the presence of a new exocrine organ, the rostral gland, whose structure has remained unexplored. We have thus studied the ultrastructure of the epidermal layer of the head capsule of Verrucositermes tuberosus soldiers.We describe the ultrastructure of the rostral gland, which consists of class 3 secretory cells only. The dominant secretory organelles comprise rough endoplasmic reticulum and Golgi apparatus, which provide secretions delivered to the surface of the head, likely made of peptide-derived components of unclear function. We discuss a possible role of the rostral gland of soldiers as an adaptation to the frequent encounter with soil pathogens during search for new food resources. KW - Soil-feeding habit KW - Advanced groups of termites KW - New exocrine organ KW - Rostral gland KW - Epidemal layer KW - Peptide-derived components PY - 2023 DO - https://doi.org/10.1016/j.asd.2023.101238 SN - 1467-8039 VL - 73 SP - 1 EP - 5 PB - Elsevier Ltd. CY - London, UK AN - OPUS4-57046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -