TY - JOUR A1 - Armitage, S. AO A1 - Genersch, E. A1 - McMahon, Dino Peter A1 - Rafaluk-Mohr, C. A1 - Rolff, J. ED - Milutinovic, B. ED - Armitage, S. AO T1 - Tripartite interactions: how immunity, microbiota and pathogens interact and affect pathogen virulence evolution$ N2 - The bipartite interactions between insect hosts and their bacterial gut microbiota, or their bacterial pathogens, are empirically and theoretically well-explored. However, direct, and indirect tripartite interactions will also likely occur inside a host. These interactions will almost certainly affect the trajectory of pathogen virulence evolution, an area that is currently under researched. The interactions within tripartite associations can be competitive, that is, exploitative-competition, interference-competition or apparent-competition. Competitive interactions will be significantly influenced by non-competitive effects, for example, immunopathology, immunosuppression, and microbiota-mediated tolerance. Considering a combination of these interactions and effects, will enable an increased understanding of the evolution of pathogen virulence. This new perspective allows us to identify several novel research questions, which we hope will be a useful framework for future research. KW - Tripartite interactions KW - Community-level interactions KW - Microbiota KW - Pathogen virulence KW - Host immunity PY - 2022 U6 - https://doi.org/10.1016/J.cois.2021.12.011 VL - 50 SP - 1 EP - 8 PB - Elsevier Inc. CY - Amsterdam, Netherlands AN - OPUS4-54357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -