TY - JOUR A1 - Bastuck, M. A1 - Baur, T. A1 - Richter, Matthias A1 - Mull, B. A1 - Schütze, A. A1 - Sauerwald, T. T1 - Comparison of ppb-level gas measurements with a metal-oxide semiconductor gas sensor in two independent laboratories N2 - In this work, we use a gas sensor system consisting of a commercially available gas sensor in temperature cycled operation. It is trained with an extensive gas profile for detection and quantification of hazardous volatile organic compounds (VOC) in the ppb range independent of a varying background of other, less harmful VOCs and inorganic interfering gases like humidity or hydrogen. This training was then validated using a different gas mixture generation apparatus at an independent lab providing analytical methods as reference. While the varying background impedes selective detection of benzene and naphthalene at the low concentrations supplied, both formaldehyde and total VOC can well be quantified, after calibration transfer, by models trained with data from one system and evaluated with data from the other system. The lowest achievable root mean squared errors of prediction were 49 ppb for formaldehyde (in a concentration range of 20–200 ppb) and 150 μg/m³ (in a concentration range of 25–450 μg/m³) for total VOC. The latter uncertainty improves to 13 μg/m³ with a more confined model range of 220–320 μg/m³. The data from the second lab indicate an interfering gas which cannot be detected analytically but strongly influences the sensor signal. This demonstrates the need to take into account all sensor relevant gases, like, e.g., hydrogen and carbon monoxide, in analytical reference measurements. KW - Indoor air quality KW - Volatile organic compounds KW - Calibration transfer KW - Selective quantification KW - Inter-lab comparison PY - 2018 U6 - https://doi.org/10.1016/j.snb.2018.06.097 SN - 0925-4005 VL - 273 SP - 1037 EP - 1046 PB - Elsevier B.V. AN - OPUS4-45609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Krom, I. A1 - Heikens, D. A1 - Horn, Wolfgang A1 - Wilke, Olaf A1 - Richter, Matthias A1 - Baldan, A. T1 - Metrological generation of SI-traceable gas-phase standards and reference materials for (semi-) volatile organic compounds N2 - EN 16516 sets specifications for the determination of emissions into indoor air from construction products. Reliable, accurate and International System of Unit (SI)-traceable measurement results of the emissions are the key to consumer protection. Such measurement results can be obtained by using metrologically traceable reference materials. Gas-phase standards of volatile organic compounds (VOCs) in air can be prepared by a variety of dynamic methods according to the ISO 6145 series. However, these methods are not always applicable for semi-VOCs (SVOCs) due to their high boiling point and low vapour pressure. Therefore, a novel dynamic gas mixture generation system has been developed. With this system gas-phase standards with trace level VOCs and SVOCs in air can be prepared between 10 nmol mol−1 and 1000 nmol mol−1. The VOCs and SVOCs in this study have normal boiling points ranging from 146 °C to 343 °C. Metrologically traceable reference materials of the gas-phase standard were obtained by sampling of the VOC gas-phase standard into Tenax TA® sorbent material in SilcoNert® coated stainless steel tubes. Accurately known masses between 10 ng and 1000 ng per VOC were sampled. These reference materials were used to validate the dynamic system. Furthermore, the storage and stability periods of the VOCs in the reference materials were determined as these are crucial characteristics to obtain accurate and SI-traceable reference materials. In a round robin test (RRT), the reference materials were used with the aim of demonstrating the feasibility of providing SI-traceable standard reference values for SVOCs for interlaboratory comparison purposes. Based on the results from the validation, the storage and stability studies and the RRT, gas-phase standards and reference materials of VOCs and SVOCs with relative expanded uncertainties between 5% and 12% (k = 2) have been developed. These reference standards can be used as calibrants, reference materials or quality control materials for the analysis of VOC emissions. KW - SVOC KW - Dynamic calibration gas mixtures KW - Reference materials KW - Indoor air KW - Thermal desorption PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-565978 VL - 34 IS - 3 SP - 1 EP - 13 PB - IOP Publishing AN - OPUS4-56597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Selection of gas standards, gas chromatography column and adsorbents for the measurement of very volatile organic compounds (C1–C6) in indoor air N2 - The ISO 16000-6 standard gives directions to adapt the analysis of volatile organic compounds (VOCs) in indoor and test chamber air to very volatile organic compounds (VVOCs). The same techniques with sorbent-based active sampling, thermal desorption and gas chromatography coupled with mass spectrometry (TD-GC/MS) should be used. However, VVOCs require gaseous standards, an adapted GC column and a reliable sampling adsorbent. This work presents experimental results to tackle those three experimental gaps. A stable standard gas mixture containing 47 VVOCs, 13 VOCs and an internal standard was successfully generated. It was employed to study the suitability of seven types of chromatography columns. The use of PLOT (Porous Layer Open Tubular) columns such as PoraBOND Q is well suitable for VVOC analysis. The recoveries of the 60 analytes on a total of 16 adsorbents and their combinations were determined: A combination of the graphitized carbon black Carbograph 5TD 40/60 and the carbon molecular sieve CarbosieveTM SII showed great recoveries for all analytes. Carbon molecular sieves adsorb water which can impair the analysis. A dry purge of the multi-sorbent in the sampling direction led to a complete water removal and promising recoveries of the analytes. KW - VVOC KW - VOC KW - ISO 16000-6 KW - Gas chromatography KW - Thermal desorption KW - Air sampling PY - 2023 U6 - https://doi.org/10.1016/j.aca.2022.340561 SN - 0003-2670 VL - 1238 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-56366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Measurement of very volatile organic compounds (VVOCs) in indoor air by sorbent-based active sampling: Identifying the gaps towards standardisation N2 - The ISO 16000-6 standard describes a method for the determination of volatile organic compounds (VOCs) in indoor and test chamber air by sorbent-based active sampling, thermal desorption and gas chromatography coupled with mass spectrometry (GC/MS). It also gives directions to adapt this methodology to very volatile organic compounds (VVOCs). Indeed, toxicologically based guideline values are being implemented for these compounds and it becomes necessary to measure them. But a comprehensive and robust measurement method is lacking. This work highlights the points that still need to be explored towards the standardisation of a suitable procedure: investigations on sorbent combinations, the suitability of chromatography columns and the use of gaseous standards are required. The biggest challenge remains in the fact that strong sorbents adsorb water together with VVOCs. Water may impair the analysis and the optimal approach to eliminate it is still to be found and integrated into the sampling strategy. KW - Solvents KW - Air analysis KW - VOC KW - Thermal desorption KW - Gas chromatography KW - ISO 16000-6 PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-523919 VL - 140 SP - 116265 PB - Elsevier B.V. AN - OPUS4-52391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - On the use of Carbograph 5TD as an adsorbent for sampling VVOCs: validation of an analytical method N2 - A standardised method for the analysis of very volatile organic compounds (VVOCs) in indoor air is still missing. This study evaluates the use of Carbograph 5TD as an adsorbent for 60 compounds (47 VVOCs + 13 VOCs) by comparing their recoveries with different spiking modes. The influence of the spiking of the tubes in dry nitrogen, humidified air or along the whole flushing duration mimicking real sampling was investigated. 49 substances (36 VVOCs from C1 to C6) had recoveries over 70% on the adsorbent in humidified air and were validated. The linearity of the calibration curves was verified for every spiking mode and the limits of detection (LOD) and quantification (LOQ) were determined. The LOQs were lower than the existing indoor air guideline values. The robustness of the method was considered by studying the influence of the sampling volume, the sampling flow rate, the humidity level and the storage of the tubes. In general, the most volatile or polar substances were the less robust ones. The combined measurement uncertainty was calculated and lies below 35% for a vast majority of the substances. An example of an emission chamber test using polyurethane foam is shown: Carbograph 5TD performs much better than Tenax® TA for VVOCs and emissions from n-butane were quantified with combined measurement uncertainty. KW - VVOC KW - Gas chromatography KW - Thermal desorption KW - Air sampling PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-581113 VL - 15 IS - 31 SP - 3810 EP - 3821 AN - OPUS4-58111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hofmann, Michael A1 - Richter, Matthias A1 - Jann, Oliver T1 - Robustness validation of a test procedure for the determination of the radon-222 exhalation rate from construction products in VOC emission test chambers N2 - This study investigated the adaptation of the state-of-the-art test procedure for the determination of emissions of volatile organic compounds (VOC) from materials into indoor air to test for the radon exhalation from stony construction products. A complete robustness validation including all relevant parameters showed that the procedure can be well applied by testing institutes already holding available the required VOC testing infrastructure that solely needs to be complemented by calibrated commercial radon measurement instrumentation. When measurements of the radon exhalation from construction materials become mandatory by law, test capacity can easily be applied. This work can serve as a recommendation for the European standardisation that still is on hold in this point. KW - Radon exhalation KW - Construction products KW - Emission test chamber KW - Robustness validation KW - Standardisation PY - 2020 U6 - https://doi.org/10.1016/j.apradiso.2020.109372 SN - 0969-8043 VL - 166 IS - 109372 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-51145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Horn, Wolfgang A1 - Richter, Matthias A1 - Wilke, Olaf T1 - Volatile organic compounds from building products - Results from seven proficiency tests with emission test chambers conducted between 2008 and 2021 N2 - Emission testing of volatile organic compounds (VOC) from materials and products is commonly based on emission test chamber measurements. To ensure the comparability of results from different testing laboratories their measurement performance must be verified. For this purpose, Bundesanstalt für Materialforschung und -prüfung (BAM) organizes an international proficiency test every two years using well-characterised test materials (one sealant, one furniture board and four times a lacquer) with defined VOC emissions. The materials fulfilled the requirements of homogeneity, reproducibility, and stability. Altogether, 41 VOCs were included of which 37 gave test chamber air concentrations between 10 and 98 µg/m³. This is the typical concentration range to be expected and to be quantified when performing chamber tests. Four compounds had higher concentrations between 250 and 1105 µg/m³. The relative standard deviations (RSD) of BAM proficiency tests since 2008 are compared and the improvement of the comparability of the emission chamber testing is shown by the decrease of the mean RSD down to 23% in 2021. In contrast, the first large European interlaboratory comparison in 1999 showed a mean RSD of 51%. T2 - Proficiency Testing in Analytical Chemistry, Microbiology and Laboratory Medicine CY - Windsor, United Kingdom DA - 25.09.2023 KW - Proficiency Test KW - VOC-Emission KW - Chamber-test PY - 2023 AN - OPUS4-59694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Horn, Wolfgang A1 - Wilke, Olaf A1 - Richter, Matthias T1 - Round robin tests of odour and VOC emissions from building products – What have we learned so far? N2 - Emission testing of volatile organic compounds (VOC) and odour from materials and products is commonly based on emission test chamber measurements. These measurements are often the basis of mandatory or voluntary labelling procedures. To ensure the comparability of results from different testing laboratories their performance must be verified. For this purpose, round robin tests (RRTs) are conducted. Bundesanstalt für Materialforschung und - prüfung (BAM) offers such a RRT every two years using well characterised test materials with defined VOC emissions. In addition to the VOC quantification, the evaluation of odour is also implemented in the round robin tests. At the beginning, only perceived intensity (PI) was tested but over the years also the acceptance evaluation was considered. In principle, the results of PI and acceptance evaluation are comparable. The advantage of PI is the lower number of panel members necessary for one evaluation. T2 - Healthy Buildings 2023 Europe CY - Aachen, Germany DA - 11.06.2023 KW - Perceived intensity KW - VOC-emission KW - Poficiency test KW - Chamber test KW - Odour PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-580001 SP - 434 EP - 436 PB - ISIAQ (International Society of Indoor Air Quality and Climate) CY - Herndon, VA, USA AN - OPUS4-58000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Klinge, A. A1 - Roswag-Klinge, E. A1 - Richter, Matthias A1 - Fontana, P. A1 - Hoppe, Johannes A1 - Payet, J. ED - Venkatarama Reddy, B. V. ED - Mani, M. ED - Walker, P. T1 - The Relevance of Earthen Plasters for Eco Innovative, Cost-Efficient and Healthy Construction—Results from the EU-Funded Research Project [H]house N2 - The European building sector is moving towards more complex and high-tech building approaches. While focusing on energy efficiency, aspects e.g. occupant health, sustainability and life cycle costing are often neglected. This study highlights the potential of earthen plasters in combination with natural ventilation for low-tech solutions. The EU funded project [H]house established the outstanding performance of earthen materials in light of hygrothermal and air purifying properties, which were further supported by experimental data from monitoring of naturally ventilated pilot buildings in Berlin. Additionally, [H]house demonstrated through LCC an increased cost efficiency of earth based low-tech solutions in comparison to conventional constructions relying on mechanical ventilation. KW - Climate responsive materials KW - Low-tech approach KW - IEQ KW - natural ventilation KW - LCC PY - 2019 SN - 978-981-13-5882-1 SN - 978-981-13-5883-8 U6 - https://doi.org/10.1007/978-981-13-5883-8_32 SN - 2363-7633 SN - 2363-7641 SP - 371 EP - 382 PB - Springer Nature Singapore Pte Ltd. CY - Singapur AN - OPUS4-47792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musyanovych, A. A1 - Grimmer, Christoph A1 - Sadak, A. E. A1 - Heßling, L. A1 - Bilsel, M. A1 - Horn, Wolfgang A1 - Richter, Matthias T1 - Polymeric Capsules with VOCs for Controlled Emission N2 - Micro-(nano-)encapsulation technology involves building of a barrier between the core and the environment and offers a number of benefits to preserve the functional and physicochemical properties of core material. Tremendous progress has been made in synthesizing well-defined capsules to achieve desired properties such as particle size, chemical composition, and controlled release of the payload. Encapsulation of volatile organic compounds (VOCs) that could evaporate with a defined rate is of immense interest for application in emission reference materials (ERM). These are urgently needed for quality assurance and quality control purposes (QA/QC) required by test standards for the determination of chemical emissions of construction and other materials for interior use. As such ERMs are hardly available on the market, the EU-funded EMPIR project MetrIAQ [1] was started to fill this gap by developing a material with temporally constant emission of VOCs typically found in indoor air. Different capsules in a size range between 5 and 50 μm were synthesized through an interfacial polyaddition/polycondensation reaction in direct (water-in-oil) system. As VOC several types of hydrophobic liquid materials were used. After synthesis, the morphology and physicochemical properties of capsules were characterized by electron microscopy, FTIR and DSC/TGA. An encapsulation efficiency up to 90% could be reached. The emission kinetic of volatile agents was studied in emission test chambers at 23 °C and 50% RH for 14 days. First results indicate that variation of the cross-linking grade of the shell material is one important parameter to adjust the desired emission rate. The overall aim is to achieve a consistent emission profile that decreases by less than 10 % over a target period of at least 14 days. T2 - 36th European Colloid & Interface Society Conference CY - Chania, Crete, Greece DA - 04.09.2022 KW - Capsules KW - Volatile organic compound KW - Polymer KW - Material emissions KW - Reference materials PY - 2022 AN - OPUS4-56039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -