TY - CONF A1 - Bonnerot, Olivier A1 - Del Mastro, G. A1 - Hammerstaedt, J. A1 - Mocella, V. A1 - Rabin, Ira T1 - XRF Ink analysis of selected fragments from the Herculaneum collection N2 - Hundreds of papyrus rolls, carbonized during the 79CE eruption of Mount Vesuvius, were discovered in 1754 at Herculaneum. Sophisticated mechanical methods for unrolling the best-preserved scrolls have been applied, with varying success. However, such processes have been abandoned, to prevent risk from irremediable damage or loss and to preserve the integrity of the extremely fragile rolls. Following the development of X-ray based non-invasive techniques, attempts to virtually unroll the scrolls were made. The most common ink in Antiquity was carbon-based, and the main element of carbonized papyrus is carbon, making these investigations difficult. However, some attempts with synchrotron X-ray phase-contrast tomography (XPCT) were successful. Recently, the identification of antique inks containing metals raised hope that if some of the inks contain metal the rolls can be virtually unrolled using conventional CT- technique. We investigated the inks of a selection of partially unrolled fragments stored at the Biblioteca Nazionale di Napoli with X-ray fluorescence in order to select the best candidates for tomography. Despite the many difficulties (analysis of several layers sticking together, letters barely visible, difficulty to separate contribution from the ink and from the papyrus, inhomogeneity of the support, fragility of the fragments…), encouraging results were found, with a number of inks from Greek fragments found to contain additions to the soot (Fe, Pb, Cu P). T2 - International Symposium on Archaeometry CY - Online meeting DA - 16.05.2022 KW - XRF KW - Ink KW - Herculaneum KW - Papyrus PY - 2022 AN - OPUS4-54892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Bosch, S. A1 - Rabin, Ira A1 - Hahn, Oliver T1 - Scientific service project Z02 at the CSMC: Material-science methods of reconstructing the history of manuscripts N2 - Z02 is one of the three technically supporting projects at the CSMC. In collaboration with Z01 and Z03, it aims at bridging the gap between humanities and natural sciences and technology. To that purpose, we set up a laboratory with a range of high-end instruments, most of them mobile, allowing thorough non-destructive analysis of manuscripts. In addition to working on constantly improving the laboratory and the methods of analysis, a substantial part of our activities is dedicated to service, by supporting different research projects conducted at the center. In this talk, we will present our equipment and the possibilities offered by the different techniques available regarding the different kinds of missions: typology and classification of inks, provenance studies, recovery of faded inscriptions and palimpsests, reconstruction of the history of manuscripts, authentication and dating. We will give a brief overview of our past and ongoing activities in the frame of the second phase of the CSMC. Finally, a selection of three projects will be presented in greater detail to highlight the possibilities of our laboratory and the diversity of missions which can be carried out: - Support of project C08 on East Frankish manuscripts containing collections of formulae - Identifying color materials applied in Muhammad Juki's Shahnamah with non-invasive combined methods - Checking for the presence of metals in the Herculaneum papyri T2 - 3rd International Conference on Natural Sciences and Technology in Manuscript Analysis CY - Hamburg, Germany DA - 13.06.2018 KW - CSMC KW - Manuscript KW - Ink KW - Pigment PY - 2018 AN - OPUS4-45504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Shevchuk, I. A1 - Glaser, L. A1 - Dupont, A.-L. A1 - Rouchon, V. A1 - Cohen, Zina A1 - Rabin, Ira T1 - Are X-rays safe for manuscripts’ materials? N2 - In the last decade, applications of X-rays to the study of manuscripts significantly spread in both diversity and extent. They range from writing material analysis, mostly with X-ray fluorescence (XRF), permitting non-invasive characterization of inks and pigments used, to the investigation of the origin of writing supports. In addition, XRF mapping has proved to be an invaluable tool for recovering erased text. Finally, computed-tomography (CT) has shown potential in virtually unrolling rolls, making text readable without using-damaging mechanical methods. Despite their growing use, little attention has been paid to the side effects of such analytical tools. We observed irreversible parchment colour changes during some experiments on dead-sea scrolls with synchrotron radiation sources. Furthermore, partial photo-reduction of iron under high intensity beam during X-ray absorption near edge structure spectroscopy (XANES) measurements of iron-gall ink on paper has been reported several times [5,6]. Such phenomena have mostly been overlooked so far, although there is an increasing awareness of the necessity to study them. We conducted experiments at the Deutsches Elektronen-Synchrotron (DESY) facilities to investigate X-ray induced structural alteration of paper and parchment to see whether the presence of absorption centres (ink and pigments) has an impact. In addition to better understanding degradation processes, we are aiming to define an appropriate methodology of analysis of manuscripts with a tolerable risk of damage. The first results concerning X-ray induced damage of cellulose materials have already been presented at the Synchrotron Radiation and Neutrons in Art and Archaeology (SR2A). We are focusing here on the results on parchment materials. T2 - Cultural and Natural Heritage Workshop CY - Grenoble, France DA - 22.01.2020 KW - X-rays KW - Manuscripts KW - Parchment KW - Synchrotron PY - 2020 AN - OPUS4-50305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Del Mastro, G. A1 - Hammerstaedt, J. A1 - Mocella, V. A1 - Rabin, Ira T1 - XRF ink analysis of selected fragments from the Herculaneum collection N2 - Hundreds of papyrus rolls, carbonized during the 79CE eruption of Mount Vesuvius, were discovered in 1754 at Herculaneum. Sophisticated mechanical methods for unrolling the best-preserved scrolls have been applied, with varying success. However, such processes have been abandoned, to prevent risk from irremediable damage or loss and to preserve the integrity of the extremely fragile rolls. Following the development of X-ray based non-invasive techniques, attempts to virtually unroll the scrolls were made. The most common ink in Antiquity was carbon-based, and the main element of carbonized papyrus is carbon, making these investigations difficult. However, some attempts with synchrotron X-ray phase-contrast tomography (XPCT) were successful. Recently, the identification of antique inks containing metals raised hope that if some of the inks contain metal the rolls can be virtually unrolled using conventional CT- technique. We are presenting here the first results of a preliminary analysis, which aimed at identifying scrolls whose ink contains metals. T2 - Konferenz: 29th International Congress of Papyrology CY - Lecce, Italy DA - 28.07.2019 KW - Herculaneum KW - Papyrus KW - Tomography KW - XRF KW - Ink PY - 2019 AN - OPUS4-48615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Bosch, S. A1 - Rabin, Ira A1 - Hahn, Oliver T1 - Scientific service project z02 at the CSMC: material science methods of reconstructing the history of manuscripts N2 - Z02 is one of the three technically supporting projects at the Centre for the Study of Manuscript Cultures (CSMC). In collaboration with the other two service projects, Z01 and Z03, it aims at bridging the gap between humanities and natural sciences and technology. To that purpose, we set up a laboratory with a range of high-end instruments, most of them mobile, allowing thorough non-destructive analysis of manuscripts. In addition to working on constantly improving the laboratory and the methods of analysis, a substantial part of our activities is dedicated to service, by supporting different research projects conducted at the centre. In this talk, we will present our equipment and the possibilities offered by the different techniques available regarding the different kinds of missions: typology and classification of inks, provenance studies, recovery of faded inscriptions and palimpsests, reconstruction of the history of manuscripts, authentication and dating. We will give a brief overview of our past and ongoing activities in the frame of the second phase of the CSMC. Finally, a selection of three projects will be presented in greater detail to highlight the possibilities of our laboratory and the diversity of missions which can be carried out. T2 - International Medieval Conference CY - Leeds, United Kingdom DA - 01.07.2019 KW - Manuscript KW - Ink KW - Pigment PY - 2019 AN - OPUS4-48465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Bosch, S. A1 - Rabin, Ira A1 - Hahn, Oliver T1 - Scientific service project z02 at the csmc: material-science methods of reconstructing the history of manuscripts N2 - Z02 is one of the three technically supporting projects at the Centre for the Study of Manuscript Cultures (CSMC). In collaboration with the other two service projects, Z01 and Z03, it aims at bridging the gap between humanities and natural sciences and technology. To that purpose, we set up a laboratory with a range of high-end instruments, most of them mobile, allowing thorough non-destructive analysis of manuscripts. In addition to working on constantly improving the laboratory and the methods of analysis, a substantial part of our activities is dedicated to service, by supporting different research projects conducted at the centre. In this talk, we will present our equipment and the possibilities offered by the different techniques available regarding the different kinds of missions: typology and classification of inks, provenance studies, recovery of faded inscriptions and palimpsests, reconstruction of the history of manuscripts, authentication and dating. We will give a brief overview of our past and ongoing activities in the frame of the second phase of the CSMC. Finally, a selection of projects will be presented in greater detail to highlight the possibilities of our laboratory and the diversity of missions which can be carried out. T2 - Konferenz: Art & Archaeology 2018 CY - Jerusalem, Israel DA - 09.12.2018 KW - Manuscripts KW - Inks KW - CSMC KW - Pigments PY - 2018 AN - OPUS4-47039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Del Mastro, G. A1 - Hammerstaedt, J. A1 - Mocella, V. A1 - Rabin, Ira ED - Capasso, M. ED - Davoli, P. ED - Pellé, N. T1 - XRF Ink Analysis of Selected Fragments from the Herculaneum Collection of the Biblioteca Nazionale di Napoli T2 - Proceedings of the 29th lntemational Congress of Papyrology, Lecce 28 July-3 August 2019 N2 - Hundreds of papyrus rolls, carbonized during the 79CE eruption of Mount Vesuvius, were discovered in 1754 at Herculaneum. Sophisticated mechanical methods for unrolling the best-preserved scrolls have been applied, with varying success. However, such processes have been abandoned, to prevent risk from irremediable damage or loss and to preserve the integrity of the extremely fragile rolls. Following the development of X-ray based non-invasive techniques, attempts to virtually unroll the scrolls were made. The most common ink in Antiquity was carbon-based, and the main element of carbonized papyrus is carbon, making these investigations difficult. However, some attempts with synchrotron X-ray phase-contrast tomography (XPCT) were successful. Recently, the identification of antique inks containing metals raised hope that if some of the inks contain metal the rolls can be virtually unrolled using conventional CT- technique. We investigated the inks of a selection of partially unrolled fragments stored at the Biblioteca Nazionale di Napoli with X-ray fluorescence in order to select the best candidates for tomography. Despite the many difficulties (analysis of several layers sticking together, letters barely visible, difficulty to separate contribution from the ink and from the papyrus, inhomogeneity of the support, fragility of the fragments…), encouraging results were found, with a number of inks from Greek fragments found to contain additions to the soot (Fe, Pb, Cu P). KW - XRF KW - ink KW - Herculaneum KW - papyrus PY - 2022 UR - http://siba-ese.unisalento.it/index.php/29th_ICP/issue/view/1881 SN - 978-88-8305-177-7 DO - https://doi.org/10.1285/i99788883051760 SP - 200 EP - 213 PB - Centro di Studi Papirologici dell’Università del Salento CY - Lecce AN - OPUS4-54756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonnerot, Olivier A1 - Del Mastro, G. A1 - Hammerstaedt, J. A1 - Mocella, V. A1 - Rabin, Ira T1 - XRF ink Analysis of some Herculaneum papyri JF - Zeitschrift für Papyrologie und Epigraphik N2 - Recent research has suggested that some of the inks used in Herculaneum papyri do not consist of pure carbon. Starting from this finding, in June 2018 a preliminary campaign of analysis by means of X-Ray fluorescence (XRF) of external portions removed mechanically from their original rolls in the eighteenth century (the so-called scorze) took place at the Biblioteca Nazionale at Naples. Also in this case, the aim of the survey was to investigate the ink composition in order to detect possible traces of metal. This article sums up the results of this survey. KW - Herculaneum papyri KW - Ink KW - XRF PY - 2020 SP - 50 EP - 52 AN - OPUS4-51193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Colini, C. A1 - Hahn, Oliver A1 - Bonnerot, Olivier A1 - Steger, Simon A1 - Cohen, Zina A1 - Ghigo, Tea A1 - Christiansen, T. A1 - Bicchieri, M. A1 - Biocca, P. A1 - Krutzsch, M. A1 - Rabin, Ira ED - Friedrich, M. ED - Quenzer, J. ED - Wandrey, I. T1 - The quest for the mixed inks JF - manuscript cultures N2 - In this article, we would like to share our observations concerning the inks produced by intentionally mixing soot or charcoal with tannin extracts or iron-gall ink. Aside from Zerdoun’s mention in her outstanding review of written sources, “Les encres noires au Moyen-Âge”, this ink category has received little if any attention from scholars and scientists. And yet, if analytically attested, the use of such inks could serve as an additional category to classify and distinguish the writing inks on the historical socio-geographic map of the writing inks we are trying to build. KW - Archaeometry KW - Non-destructive testing KW - Inks PY - 2018 SN - 1867-9617 VL - 2018 IS - 11 SP - 41 EP - 48 PB - Universität Hamburg CY - Hamburg AN - OPUS4-45784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghigo, Tea A1 - Bonnerot, Olivier A1 - Buzi, P. A1 - Krutzsch, M. A1 - Hahn, Oliver A1 - Rabin, Ira ED - Friedrich, M. ED - Quenzer, J. ED - Wandrey, I. T1 - An Attempt at a Systematic study of inks from Coptic manuscripts JF - manuscript cultures N2 - It is well documented that throughout Antiquity, ancient Egyptians used mostly carbon inks as a writing material. In Late Antiquity, some metals started to be added to carbon based inks. We have records of five manuscripts from the Dead Sea Scrolls collection whose carbon inks were found to contain copper Also, lead was recently found as an additive in carbon inks on a charred fragment from Herculaneum. Furthermore, the earliest evidence of iron-gall ink was found in the Book of Proverbs (Codex Ms. Berol. orient. oct. 987) dating to the third fourth centuries ce. It has been suggested that along with carbon and iron-gall inks, there is no reason to think that purely tannin inks were not also in use in Egypt. However, so far, we just have evidence of a copper-tannin ink identified in a number of documents from Egypt in the first third centuries bce. In an attempt to fill this gap in this extremely fragmented scenario during our studies of the socio-geographic history of inks, we arrived at the conclusion that the continuous production of Coptic manuscripts from Late Antiquity to the Middle Ages offers a unique opportunity for the historical study of inks across a large geographic area. KW - Archaeometry KW - Non-destructive testing KW - Inks PY - 2018 SN - 1867-9617 VL - 2018 IS - 11 SP - 157 EP - 163 PB - Universität Hamburg CY - Hamburg AN - OPUS4-45817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -