TY - JOUR A1 - Tavasolyzadeh, Zeynab A1 - Tang, Peng A1 - Hahn, Marc Benjamin A1 - Hweidi, Gada A1 - Nordholt, Niclas A1 - Haag, Rainer A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - 2D and 3D Micropatterning of Mussel‐Inspired Functional Materials by Direct Laser Writing JF - Small : nano micro N2 - AbstractThis work addresses the critical need for multifunctional materials and substrate‐independent high‐precision surface modification techniques that are essential for advancing microdevices and sensing elements. To overcome existing limitations, the versatility of mussel‐inspired materials (MIMs) is combined with state‐of‐the‐art multiphoton direct laser writing (DLW) microfabrication. In this way, 2D and 3D MIM microstructures of complex designs are demonstrated with sub‐micron to micron resolution and extensive post‐functionalization capabilities. This study includes polydopamine (PDA), mussel‐inspired linear, and dendritic polyglycerols (MI‐lPG and MI‐dPG), allowing their direct microstructure on the substrate of choice with the option to tailor the patterned topography and morphology in a controllable manner. The functionality potential of MIMs is demonstrated by successfully immobilizing and detecting single‐stranded DNA on MIM micropattern and nanoarray surfaces. In addition, easy modification of MIM microstructure with silver nanoparticles without the need of any reducing agent is shown. The methodology developed here enables the integration of MIMs in advanced applications where precise surface functionalization is essential. KW - Direct laser writing KW - Mussel-inspired materials KW - Polyglycerol KW - Polydopamine KW - Micropatterning PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588778 DO - https://doi.org/10.1002/smll.202309394 SN - 1613-6829 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-58877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulze-Makuch, D. A1 - Haque, S. A1 - Beckles, D. A1 - Schmitt-Kopplin, P. A1 - Harir, M. A1 - Schneider, Beate A1 - Stumpp, C. A1 - Wagner, D. T1 - A chemical and microbial characterization of selected mud volcanoes in Trinidad reveals pathogens introduced by surface water and rain water JF - Science of The Total Environment N2 - Terrestrial mud volcanoes are unique structures driven by tectonic pressure and fluids from the deep subsurface. These structures are mainly found in active tectonic zones, such as the area near the Los Bajos Fault in Trinidad. Here we report a chemical and microbiological characterization of three mud volcanoes, which included analyses of multiple liquid and solid samples from the mud volcanoes. Our study confirms previous suggestions that at least some of the mud volcano fluids are a mixture of deeper salt-rich water and surficial/precipitation water. No apparent water quality differences were found between sampling sites north and south of a major geological fault line. Microbiological analyses revealed diverse communities, both aerobic and anaerobic, including sulfate reducers, methanogens, carbon dioxide fixing and denitrifying bacteria. Several identified species were halophilic and likely derived from the deeper salt-rich subsurface water, while we also cultivated pathogenic species from the Vibrionaceae, Enterobacteriaceae, Shewanellaceae, and Clostridiaceae. These microorganisms were likely introduced into the mud volcano fluids both from surface water or shallow ground-water, and perhaps to a more minor degree by rain water. The identified pathogens are a major health concern that needs to be addressed. KW - Water stable isotope analysis KW - Mud volcanoe fluids KW - Metabolomics PY - 2020 DO - https://doi.org/10.1016/j.scitotenv.2019.136087 VL - 707 SP - 136087 PB - Elsevier B.V. AN - OPUS4-50499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steger, Simon A1 - Stege, H. A1 - Bretz, S. A1 - Hahn, Oliver T1 - A complementary spectroscopic approach for the non-invasive in-situ identification of synthetic organic pigments in modern reverse paintings on glass (1913–1946) JF - Journal of Cultural Heritage N2 - This work addresses the identification of synthetic organic pigments (SOP) in eight modern reverse paintings on glass (1913–1946) by means of an in-situ multi-analytical approach. We combined the complementary properties of mobile Raman spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to overcome the main disadvantages of each method: extensive band overlapping in DRIFT spectra and fluorescence problems in Raman spectra. A collection of DRIFTS reference spectra enables a precise pigment identification by DRIFTS and establishes this method as a serious non-destructive alternative for the identification of SOP. The group of β-naphthol pigments yielded valuable results for both methods, whereas synthetic alizarin (PR83) was preferentially detected by DRIFTS. Finally, uncommon triaryl carbonium pigments and two azo group-based yellows were identified in the paintings by means of Raman spectroscopy. KW - Synthetic organic pigments KW - DRIFTS KW - Raman spectroscopy KW - Reverse glass painting PY - 2019 DO - https://doi.org/10.1016/j.culher.2019.01.011 SN - 1296-2074 SN - 1778-3674 VL - 38 SP - 20 EP - 28 PB - Elsevier Masson SAS. AN - OPUS4-48008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - von der Au, Marcus A1 - Wittwer, Phillip A1 - Roesch, Philipp A1 - Pfeifer, Jens A1 - Cossmer, Antje A1 - Meermann, Björn T1 - A fast and simple PFAS extraction method utilizing HR–CS–GFMAS for soil samples JF - Chemosphere N2 - Here, we describe an optimized fast and simple extraction method for the determination of per- and polyfluorinated alkyl substances (PFASs) in soils utilizing high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR–CS–GFMAS). To omit the bias of the solid phase extraction (SPE) step commonly used during the analysis of extractable organically bound fluorine (EOF) we optimized a fast and simple SPE-free extraction method. The developed extraction method consists of a liquid-solid extraction using acidified methanol without any additional SPE. Four extraction steps were representative to determine a high proportion of the EOF (>80% of eight extractions). Comparison of the optimized method with and without an additional SPE clean-up step revealed a drastic underestimation of EOF concentrations using SPE. Differences of up to 94% were observed which were not explainable by coextracted inorganic fluoride. Therefore, not only a more accurate but also a more economic as well as ecologic method (bypassing of unnecessary SPE) was developed. The procedural limit of quantification (LOQ) of the developed method was 10.30 μg/kg which was sufficient for quantifying EOF concentrations in all tested samples. For future PFAS monitoring and potential regulative decisions the herein presented optimized extraction method can offer a valuable contribution. KW - Per- and polyfluorinated alkly substances (PFASs) KW - High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) KW - Soils KW - Solid phase extraction (SPE) KW - Extractable organically bound fluorine (EOF) KW - Solid-liquid extraction PY - 2022 DO - https://doi.org/10.1016/j.chemosphere.2022.133922 VL - 295 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-54359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nordholt, Niclas A1 - O'Hara, Kate A1 - Resch-Genger, Ute A1 - Blaskovich, M. A1 - Rühle, Bastian A1 - Schreiber, Frank T1 - A fluorescently labelled quaternary ammonium compound (NBD-DDA) to study resistance mechanisms in bacteria JF - Frontiers in microbiology N2 - Quaternary ammonium compounds (QACs) are widely used as active agents in disinfectants, antiseptics, and preservatives. Despite being in use since the 1940s, there remain multiple open questions regarding their detailed mode-of-action and the mechanisms, including phenotypic heterogeneity, that can make bacteria less susceptible to QACs. To facilitate studies on resistance mechanisms towards QACs, we synthesized a fluorescent quaternary ammonium compound, namely N-dodecyl-N,N-dimethyl-[2-[(4-nitro-2,1,3-benzoxadiazol-7-yl)amino]ethyl]azanium-iodide (NBD-DDA). NBD-DDA is readily detected by flow cytometry and fluorescence microscopy with standard GFP/FITC-settings, making it suitable for molecular and single-cell studies. As a proof-of-concept, NBD-DDA was then used to investigate resistance mechanisms which can be heterogeneous among individual bacterial cells. Our results reveal that the antimicrobial activity of NBD-DDA against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa is comparable to that of benzalkonium chloride (BAC), a widely used QAC, and benzyl-dimethyl-dodecylammonium chloride (BAC12), a mono-constituent BAC with alkyl-chain length of 12 and high structural similarity to NBD-DDA. Characteristic time-kill kinetics and increased tolerance of a BAC tolerant E. coli strain against NBD-DDA suggest that the mode of action of NBD-DDA is similar to that of BAC. As revealed by confocal laser scanning microscopy (CLSM), NBD-DDA is preferentially localized to the cell envelope of E. coli, which is a primary target of BAC and other QACs. Leveraging these findings and NBD-DDA‘s fluorescent properties, we show that reduced cellular accumulation is responsible for the evolved BAC tolerance in the BAC tolerant E. coli strain and that NBD-DDA is subject to efflux mediated by TolC. Overall, NBD-DDA’s antimicrobial activity, its fluorescent properties, and its ease of detection render it a powerful tool to study resistance mechanisms of QACs in bacteria and highlight its potential to gain detailed insights into its mode-of-action. KW - Antimicrobial resistance KW - Bacteria KW - Disinfection KW - Biocides PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563811 DO - https://doi.org/10.3389/fmicb.2022.1023326 SN - 1664-302X IS - 13 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-56381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Uhlig, S. A1 - Colson, B. A1 - Schoknecht, Ute T1 - A mathematical approach for the analysis of data obtained from the monitoring of biocides leached from treated materials exposed to outdoor conditions JF - Chemosphere N2 - Leaching processes are responsible for the release of biocides from treated materials into the environment. Adequate modeling of emission processes is required in order to predict emission values in the framework of the risk assessment of biocidal products intended for long-term service life. Regression approaches have been applied to data obtained from the long-term monitoring of biocide emissions in experiments involving semi-field conditions. Due to the complex interaction of different underlying mechanisms such as water and biocide diffusion and desorption, however, these attempts have proven to be of limited usefulness e at least, for the available biocide emission data. It seems that the behavior of the biocide emission curve depends to a considerable extent on whichever underlying mechanism is slowest at a given point in time, thus limiting the amount of biocide available for release. Building on results obtained in the past few years, the authors propose a criterion for determining which mechanism controls the leaching process at a given point in time based on the slope of the log-log emission curve. In addition, a first-order approximation of this slope value is presented which displays advantages both in terms of computability and interpretability. Finally, an algorithm for the determination of breakpoints in the slope of the log-log emission curve is presented for the demarcation of phases within which one mechanism acts as a limiting factor. KW - Biocides KW - Leaching KW - Weathering KW - Mathematical analysis PY - 2019 DO - https://doi.org/10.1016/j.chemosphere.2019.04.102 SN - 0045-6535 SN - 1879-1298 VL - 228 SP - 271 EP - 277 PB - Elsevier AN - OPUS4-47886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ibrahim, B. A1 - McMahon, Dino Peter A1 - Hufsky, F. A1 - Beer, M. A1 - Ding, L. A1 - Le Mercier, P. A1 - Palmarini, M. A1 - Thiel, V. A1 - Marz, M. T1 - A new era of virus bioinformatics JF - Virus research N2 - Despite the recognized excellence of virology and bioinformatics, these two communities have interacted surprisingly sporadically, aside from some pioneering work on HIV-1 and influenza. Bringing together the Expertise of bioinformaticians and virologists is crucial, since very specific but fundamental computational approaches are required for virus research, particularly in an era of big data. Collaboration between virologists and bioinformaticians is necessary to improve existing analytical tools, cloud-based systems, computational resources, data sharing approaches, new diagnostic tools, and bioinformatic training. Here, we highlight current progress and discuss potential avenues for future developments in this promising era of virus bioinformatics. We end by presenting an overview of current technologies, and by outlining some of the Major challenges and Advantages that bioinformatics will bring to the field of virology. KW - Bioinformatics virology viruses software PY - 2018 DO - https://doi.org/10.1016/j.virusres.2018.05.009 SN - 0168-1702 SN - 1872-7492 VL - 251 SP - 86 EP - 90 PB - Elsevier CY - Amsterdam AN - OPUS4-45880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abis, M. A1 - Bruno, M. A1 - Simon, Franz-Georg A1 - Grönholm, R. A1 - Hoppe, M. A1 - Kuchta, K. A1 - Fiore, S. T1 - A Novel Dry Treatment for Municipal Solid Waste Incineration Bottom Ash for the Reduction of Salts and Potential Toxic Elements JF - Materials N2 - The main obstacle to bottom ash (BA) being used as a recycling aggregate is the content of salts and potential toxic elements (PTEs), concentrated in a layer that coats BA particles. This work presents a dry treatment for the removal of salts and PTEs from BA particles. Two pilotscale abrasion units (with/without the removal of the fine particles) were fed with different BA samples. The performance of the abrasion tests was assessed through the analyses of particle size and moisture, and that of the column leaching tests at solid-to-liquid ratios between 0.3 and 4. The results were: the particle-size distribution of the treated materials was homogeneous (25 wt % had dimensions <6.3 mm) and their moisture halved, as well as the electrical conductivity of the leachates. A significant decrease was observed in the leachates of the treated BA for sulphates (44%), chlorides (26%), and PTEs (53% Cr, 60% Cu and 8% Mo). The statistical analysis revealed good correlations between chloride and sulphate concentrations in the leachates with Ba, Cu, Mo, and Sr, illustrating the consistent behavior of the major and minor components of the layer surrounding BA particles. In conclusion, the tested process could be considered as promising for the improvement of BA valorization. KW - Bottom ash KW - Dry treatment KW - Potential toxic elements KW - Salts PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527963 DO - https://doi.org/10.3390/ma14113133 SN - 1996-1944 VL - 14 IS - 11 SP - 3133 PB - MDPI CY - Basel AN - OPUS4-52796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trimpert, J. A1 - Groenke, N. A1 - Kunec, D. A1 - Eschke, K. A1 - He, Shulin A1 - McMahon, Dino Peter A1 - Osterrieder, N. T1 - A proofreading-impaired herpesvirus generates populations with quasispecies-like structure JF - Nature Microbiology N2 - RNA virus populations are composed of highly diverse individuals that form a cloud of related sequences commonly referred to as a ‘quasispecies’1–3. This diversity arises as a consequence of low-fidelity genome replication4,5. By contrast, DNA Virus populations contain more uniform individuals with similar fitness6. Genome diversity is often correlated with increased Fitness in RNA viruses, while DNA viruses are thought to require more faithful genome replication. During DNA replication, erroneously incorporated bases are removed by a 3′-5′ exonuclease, a highly conserved enzymatic function of replicative DNA but not RNA polymerases. This proofreading process enhances replication fidelity and ensures the genome integrity of DNA organisms, including large DNA viruses7. Here, we show that a herpesvirus can tolerate impaired exonucleolytic proofreading, resulting in DNA virus populations, which, as in RNA viruses8, are composed of highly diverse genotypes of variable individual fitness. This indicates that herpesvirus mutant diversity may compensate for individual Fitness loss. Notably, in vivo infection with diverse virus populations results in a marked increase in virulence compared to genetically homogenous parental virus. While we cannot exclude that the increase in virulence is caused by selection of and/or interactions between individual genotypes, our findings are consistent with quasispecies dynamics. Our results contrast with traditional views of DNA virus replication and evolution, and indicate that a substantial increase in population diversity can lead to higher virulence. KW - Marek's virus KW - Virulence KW - Quasispecies KW - Evolution PY - 2019 DO - https://doi.org/10.1038/s41564-019-0547-x SN - 2058-5276 N1 - Corrigendum: Nature Microbiology 4 (2019) 2025 VL - 4 SP - 2175 EP - 2183 PB - Nature Publishing Group CY - London AN - OPUS4-48896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Vallée, A. A1 - Bally, P. A1 - Bruel, C. A1 - Chandat, L. A1 - Choquer, M. A1 - Dieryckx, C. A1 - Dupuy, J.W. A1 - Kaiser, S. A1 - Latorse, M.-P. A1 - Loisel, E. A1 - Mey, G. A1 - Morgant, G. A1 - Rascle, C. A1 - Schumacher, Julia A1 - Simon, A. A1 - Souibgui, E. A1 - Viaud, M. A1 - Villalba, F. A1 - Poussereau, N. T1 - A similar secretome disturbance as a hallmark of non-pathogenic Botrytis cinerea ATMT-mutants? JF - Frontiers in microbiology N2 - The gray mold fungus Botrytis cinerea is a necrotrophic pathogen able to infect hundreds of host plants, including high-value crops such as grapevine, strawberry and tomato. In order to decipher its infectious strategy, a library of 2,144 mutants was generated by random insertional mutagenesis using Agrobacterium tumefaciensmediated transformation (ATMT). Twelve mutants exhibiting total loss of virulence toward different host plants were chosen for detailed analyses. Their molecular characterization revealed a single T-DNA insertion in different loci. Using a proteomics approach, the secretome of four of these strains was compared to that of the parental strain and a common profile of reduced lytic enzymes was recorded. Significant variations in this profile, notably deficiencies in the secretion of proteases and hemicellulases, were observed and validated by biochemical tests. They were also a hallmark of the remaining eight non-pathogenic strains, suggesting the importance of these secreted Proteins in the infection process. In the twelve non-pathogenic mutants, the Differentiation of infection cushions was also impaired, suggesting a link between the Penetration structures and the secretion of proteins involved in the virulence of the pathogen. KW - Fungus KW - Plant pathogen KW - Virulence PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502710 DO - https://doi.org/10.3389/fmicb.2019.02829 SN - 1664-302X VL - 10 SP - Article 2829 PB - Frontiers Media CY - Lausanne AN - OPUS4-50271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -