TY - CONF A1 - Pietsch, Franziska A1 - Schreiber, Frank A1 - Heidrich, Gabriele T1 - Selection of resistance in bacterial biofilms grown on antimicrobial surfaces in a multidrug environment N2 - Introduction: Biofilms are regarded as a common cause of chronic infections on medical devices. Preventive and therapeutic strategies against biofilm infections commonly involve applications of multiple antimicrobial substances: antimicrobial coatings on the implanted biomaterials in combination with systemically administered antibiotics. While this practice of combination therapy harbours the risk of developing cross-resistance, it might also provide the possibility to implement specific antimicrobial-antibiotic combinations (AACs) that can slow down the selection of antibiotic resistant strains. Hypothesis and aims: Specific AACs can exert combinatorial effects on the growth of susceptible and antibiotic-resistant Pseudomonas aeruginosa that either suppress or increase their individual effects. Our aim is to identify AACs with antagonistic or synergistic effects on pseudomonal biofilms and to understand their impact on selection of resistant strains. Specifically, we want to identify AACs that select for and against antibiotic resistance during biofilm formation. Methodology: We screened for AACs that cause antagonistic or synergistic effects on planktonic P. aeruginosa. To study the effect of antimicrobial-antibiotic exposure on resistance selection in bacterial biofilms, we will grow resistant and sensitive strains on PDMS surfaces with and without antimicrobial coatings and expose them to antibiotics. Results: Several combinations with synergistic or antagonistic interaction on the growth rate of P. aeruginosa were detected. We observed a strong antagonism when combining the antimicrobial substance chlorhexidine with the carbapenem drug meropenem. A meropenem-resistant mutant showed a selection advantage in low concentrations of chlorhexidine combined with a sub-inhibitory concentration of meropenem over the wild-type. No antagonistic effect was observed for the same combination when E. coli was exposed to chlorhexidine and meropenem, suggesting a non-chemical basis for the observed effect on P. aeruginosa. Conclusion: Gaining a better understanding about resistance selection during biofilm formation on biomedical surfaces will enable us to mitigate against biofilm-associated antimicrobial resistance. T2 - Eurobiofilms 2019 CY - Glasgow, UK DA - 03.09.2019 KW - Resistance KW - Antibiotics KW - Pseudomonas PY - 2019 AN - OPUS4-49168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pietsch, Franziska A1 - Schreiber, Frank T1 - Selection of resistance in bacterial biofilms grown on antimicrobial surfaces in a multidrug environment N2 - Background Bacterial biofilms are regarded as the most common cause of chronic infections and are often associated with medical devices, such as implants and catheters. Bacteria growing in biofilms produce a protective, extracellular matrix, which enables them to tolerate much higher antimicrobial concentrations than free-living bacteria and survive long enough to acquire antimicrobial resistance. Preventive and therapeutic strategies against biofilm infections in clinical settings commonly involve the application of multiple antimicrobials: biocidal coatings on the biomaterials and systemically administered antibiotics. This frequent practice harbors the risk of the development of cross-resistance via shared resistance mechanisms between antimicrobials used in material coatings and administered antibiotics. Aim Our goal is to determine how bacteria adapt to antimicrobials during biofilm formation on surfaces coated with antimicrobials and how population dynamics within biofilms affect the transmission of resistance mutations. Specifically, we want to identify antimicrobial-antibiotic-combinations that select for and against antibiotic resistance in biofilms by following the population dynamics of resistant and susceptible strains in competition assays on a single cell level. Methodology To study the effect of antimicrobial-antibiotic exposure on resistance development and population dynamics on bacterial biofilms in a multidrug environment, we will grow Pseudomonas aeruginosa on glass surfaces with and without antimicrobial coatings and expose them to antibiotics. First, we will screen in vitro for combinations of antibiotics and antimicrobials that select for and against antibiotic resistance. Second, effective combinations will be chosen for in-depth investigations during bacterial adhesion and of mature biofilms of resistant and susceptible genotypes. Third, based on the outcome of the screen and the obtained mechanistic understanding we will choose a clinical example in which we study the relevance of our findings in biofilms grown in vivo. Relevance Studying the biointerfacial interactions between bacterial biofilms and medical devices in terms of population dynamics as well as on single cell level during multidrug selection will help us understand how drug resistance develops and spreads in persistent biofilm infections. Based on our findings we aim to provide clinical recommendations for improved administration of antibiotics/antimicrobials in combination with medical device materials in order to mitigate against biofilm associated antimicrobial resistance. T2 - Biofilms 8 Conference CY - Aarhus, Denmark DA - 27.05.2018 KW - Resistance KW - Antimicrobials PY - 2018 AN - OPUS4-46524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pietsch, Franziska A1 - Schreiber, Frank T1 - Selection of resistance in bacteria grown on antimicrobial surfaces in a multidrug environment N2 - Bacterial biofilms are regarded as the most common cause of chronic infections and are often associated with medical devices, such as implants and catheters. Bacteria growing in biofilms produce a protective, extracellular matrix, which enables them to tolerate much higher antimicrobial concentrations than free-living bacteria and survive long enough to acquire antimicrobial resistance. Preventive and therapeutic strategies against biofilm infections in clinical settings commonly involve the application of multiple antimicrobials: antimicrobial coatings on the biomaterials and systemically administered antibiotics. This frequent practice harbors the risk of the development of cross-resistance via shared resistance mechanisms between antimicrobials used in material coatings and administered antibiotics. Our goal is to determine how population dynamics within biofilms affect the transmission of resistance mutations. Specifically, we want to identify antimicrobial-antibiotic-combinations that select for and against antibiotic resistance in biofilms by following the population dynamics of resistant and susceptible strains in competition assays. Gaining a better understanding about resistance development and spread in persistent biofilm infections will enable us to provide clinical recommendations for improved administration of antibiotics/antimicrobials in combination with medical device materials to mitigate against biofilm associated antimicrobial resistance. Here, we will discuss our first findings on the effects of combinations of the carbapenem drug meropenem and various antimicrobials. T2 - The Antimicrobial Resistance on Biomaterials Workshop CY - St. Gallen, Switzerland DA - 25.10.2018 KW - Resistance KW - Antimicrobials PY - 2018 AN - OPUS4-46526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pietsch, Franziska A1 - Schreiber, Frank T1 - Selection of Resistance in Bacterial Biofilms Grown on Antimicrobial Surfaces in a Multidrug Environment N2 - Background Bacterial biofilms are regarded as the most common cause of chronic infections and are often associated with medical devices, such as implants and catheters. Bacteria growing in biofilms produce a protective, extracellular matrix, which enables them to tolerate much higher antimicrobial concentrations than free-living bacteria and survive long enough to acquire antimicrobial resistance. Preventive and therapeutic strategies against biofilm infections in clinical settings commonly involve the application of multiple antimicrobials: biocidal coatings on the biomaterials and systemically administered antibiotics. This frequent practice harbors the risk of the development of cross-resistance via shared resistance mechanisms between antimicrobials used in material coatings and administered antibiotics. Aim Our goal is to determine how bacteria adapt to antimicrobials during biofilm formation on surfaces coated with antimicrobials, how antimicrobial resistance mutations are acquired and evolve within mature biofilms, and how population dynamics within biofilms affect the transmission of resistance mutations. Specifically, we want to identify antimicrobial-antibiotic-combinations that select for and against antibiotic resistance in biofilms by following the population dynamics of resistant and susceptible strains in competition assays. Methodology We will grow biofilms of Pseudomonas aeruginosa on glass surfaces with and without antimicrobial coatings and expose them to antibiotics. Then we will track their physiological properties, evolutionary adaptations, and population dynamics. First, we will screen in vitro for combinations of antibiotics and antimicrobials that select for and against antibiotic resistance. Second, effective combinations will be chosen for in-depth investigations during bacterial adhesion and of mature biofilms of resistant and susceptible genotypes. Third, based on the outcome of the screen and the obtained mechanistic understanding we will choose a clinical example in which we study the relevance of our findings in biofilms grown in vivo. Relevance Studying the biointerfacial interactions between bacterial biofilms and medical devices in terms of population dynamics as well as on single cell level during multidrug selection will help us understand how drug resistance develops and spreads in persistent biofilm infections. Based on our findings we aim to provide clinical recommendations for improved administration of antibiotics/antimicrobials in combination with medical device materials in order to mitigate against biofilm associated antimicrobial resistance. T2 - Challenges and New Concepts in Antibiotic Research CY - Paris, France DA - 19.03.2018 KW - Resistance KW - Antimicrobials PY - 2018 AN - OPUS4-46398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Schreiber, Frank A1 - Kanaris, Orestis T1 - Consequences of BAC tolerance for selection and evolution in the presence of antibiotics N2 - The exposure to antimicrobial substances drives the evolution of antimicrobial resistance. Biocides are antimicrobials used as disinfectants, antiseptics and preservatives. They find application on a large scale in the industrial and medical sector, but also in private households. In terms of mass, the worldwide use of biocides exceeds that of antibiotics. Thus, despite their important role in preventing the spread of pathogens, due to their ubiquity, biocides are suspected to be drivers of the antimicrobial resistance crisis. In our work at BAM we try to understand how biocides contribute to the emergence of AMR, what the underlying adaptation principles and mechanisms are and how they compare to those found for antibiotics. Within our group, I mainly focus on the following two questions: How does phenotypic heterogeneity in bacteria affect the ability to survive treatment with biocides? And what are the consequences of phenotypic heterogeneity for the evolution of resistance to biocides and antibiotics? I will share published and unpublished results which demonstrate that phenotypic heterogeneity can enable the survival of biocide treatment and, through this, facilitate the evolution of AMR. On the other hand, we find that adaptation to a biocide can unexpectedly impair the ability to evolve resistance against an antibiotic. T2 - FEMS summer school for postdocs 2022: Microbial Evolvability Mechanisms: Resistance, Biology, and Strategies to Defeat and Detect CY - Split, Croatia DA - 27.04.2022 KW - Disinfection KW - Biocides KW - Evolution KW - Resistance KW - Biocide tolerance PY - 2022 AN - OPUS4-54846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Schreiber, Frank T1 - Phenotypic heterogeneity in disinfection: sources and consequences for antimicrobial resistance N2 - A summary of projects here at BAM which investigate the influence of phenotypic heterogeneity on the outcome of disinfection and the influence on antimicrobial resistance. This presentation was given in the Theory Seminar of the Quantitative and Theoretical Biology group of Prof. Oliver Ebenhöh at HHU Düsseldorf T2 - Theory Seminar in the Quantitative and Theoretical Biology group at HHU Düsseldorf CY - Düsseldorf, Germany DA - 24.02.2022 KW - Disinfection KW - Biocides KW - Heterogeneity KW - Resistance PY - 2022 AN - OPUS4-54442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Broska, Selina A1 - Schreiber, Frank T1 - Persistence as a microbial survival strategy against disinfectants N2 - Antimicrobial resistance is a major threat to human health. The prevalence of multi-drug resistant (MDR) bacteria is predicted to increase in the future requiring robust control strategies. One cornerstone to prevent the spread of MDR bacteria in clinical settings is the application of disinfectants to improve hygiene standards. However, bacteria can evolve resistance to disinfectants, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than the majority of the population. Our results in E. coli indicate that persistence is a bacterial survival strategy against benzalkonium chloride, a widely used disinfectant. In future experiments, we will investigate the evolution of persistence in the face of fluctuating exposure to disinfectants and whether persistence facilitates resistance against disinfectants. Lastly, we will test how tolerance and resistance against disinfectants affects susceptibility against antibiotics. T2 - Bridging Ecology and Molecular Biology: Organismic Responses to Recurring Stress CY - Berlin, Germany DA - 09.04.2018 KW - Bacteria KW - Persistence KW - Resistance KW - Biocides PY - 2018 AN - OPUS4-44667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Lewerenz, Dominique A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Heterogeneity in the bacterial response to disinfection and its impact on antibiotic tolerance and resistance N2 - The global rise of antibiotic resistance has made the proper use of disinfectants more important than ever. Their application in clinical l settings is an integral part of antibiotics stewardship by preventing the occurrence and spread of infections. However, improper use of disinfectants also harbours the risk for the evolution of tolerance and resistance to disinfectants, but also to antibiotics. It is therefore crucial to understand whether and how bacteria can survive chemical disinfection and which conditions facilitate the evolution of tolerance and resistance. Here, we study the heterogeneity in the response of isogenic E. coli populations exposed to different levels of commonly used disinfectants. At concentrations below the minimal inhibitory concentration (MIC), we find that certain disinfectants induce prolonged lag times in individual cells, a phenotype that has been associated with persistence against antibiotics. At concentrations above the MIC, we find heterogeneous killing for a range of the tested substances. Interestingly, for the three cationic surfactants that were tested, we find kill kinetics revealing the presence of a tolerant subpopulation that can withstand disinfection longer than most of the population. We will present results from an ongoing evolution experiment in which we test the potential for evolution of population-wide tolerance and resistance through intermittent exposure to lethal doses of a cationic surfactant. T2 - New Approaches and Concepts in Microbiology CY - Heidelberg, Germany DA - 10.07.2019 KW - Persistence KW - Biocides KW - Resistance KW - heterogeneity KW - Bacteria PY - 2019 AN - OPUS4-48524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -