TY - CONF A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Development of a procedure for the analysis of the emissions of VVOCs N2 - Several aspects were explored towards the standardization of a suitable procedure. The use of gaseous standards is necessary and a standard gas mixture containing 60 substances was successfully generated and employed for further investigations. The suitability of different chromatography columns was addressed: The use of PLOT (Porous Layer Open Tubular) columns is well suitable for VVOC analysis. The recoveries of the 60 analytes on several adsorbents and their combinations were determined: A combination of a graphitized carbon black and a carbon molecular sieve showed great results for all analytes. Carbon molecular sieves adsorb water which can impair the analysis. Different options such as purging, the use of a drying system or splitting were investigated for water removal. This contribution will present experimental results supporting the standardization of a method for VVOC analysis. T2 - Indoor Air conference CY - Kuopio, Finland DA - 12.06.2022 KW - Analytical method KW - EN 16516 KW - ISO 16000-6 KW - VVOCs PY - 2022 AN - OPUS4-55282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - Diffusive Gradients in Thin-films (DGT) technique as screening tool for per- and polyfluoroalkyl substances (PFAS) contamination in wastewater-based fertilizers N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of organofluorine surfactants used in the formulations of thousands of consumer goods, including aqueous film-forming foams (AFFF) used to suppress aviation fires in training scenarios, non-stick cookware, fast-food wrappers, water-repellent fabrics, medical equipment, and plastic and leather products. As a result of the perpetual use of PFAS containing products, effluents and sewage sludge from wastewater treatment plants (WWTPs) have been observed to be an important pathway for PFAS into the environment. In Germany, phosphorus and other nutrients from sewage sludge and wastewater should be recycled in WWTPs of cities with a large population. However, it is not clear if PFAS contamination from wastewater and sewage sludge end up in novel wastewater-based fertilizers. Normally, PFAS are analyzed using PFAS protocols typically with time-consuming extraction steps and LC-MS-MS quantification. However, for screening of PFAS contaminations in sewage sludge or wastewater-based fertilizers also passive sampler based on the Diffusive Gradients in Thin-films (DGT) technique can be used for the PFAS extraction. Afterwards, combustion ion chromatography (CIC) can be applied to analyse the “total” amount of PFAS on the passive sampler. Here, we show results from the DGT method in comparison to those of the extractable organic fluorine (EOF) method for a variety of wastewater-based fertilizers. Additionally, we analysed the adsorption of PFAS on the weak anion exchanger (WAX) based DGT passive sampler binding layer by infrared and fluorine K-edge X-ray adsorption near-edge structure (XANES) spectroscopy. T2 - SETAC Europe 2022 CY - Copenhagen, Denmark DA - 15.05.2022 KW - Passive sampling KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Wastewater PY - 2022 AN - OPUS4-54883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Biocides Used as Material Preservatives Modify Rates of de novo Mutation and Horizontal Gene Transfer in Bacteria N2 - Biocides used as material preservatives are in contact with various environments during direct application or passive leaching from protected materials. Antimicrobial resistance (AMR) is a global health problem and the environment is an important compartment for the evolution and transmission of AMR. Soil is an environment with a large reservoir of natural microbial communities and antimicrobial resistance (AMR) genes. Those natural microbial communities are frequently exposed to biocides used as material preservatives. Previous studies have shown that antibiotics, metals and pesticides affect the underlying processes of resistance evolution and spread; namely de novo mutagenesis and horizontal gene transfer by conjugation and transformation in microbial communities. However, it is unknown if active substances used in material preservatives are involved in these processes. We show that biocides used as material preservatives affect rates of mutation and conjugation in microorganism in a species- and substance-dependent manner, while rates of transformation are not directly affected. Our data highlights the importance of assessing the contribution of material preservatives on AMR evolution and spread in the environment. T2 - Microbiome Network Meeting CY - Berlin, Germany DA - 20.07.2022 KW - Biocides KW - Horizontal gene transfer KW - Mutation rate PY - 2022 AN - OPUS4-55263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank A1 - Boenke, Viola A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Sündermann, Claudia T1 - Bacterial resistance evolution towards disinfectants and antimicrobial surfaces and development of a standardized test N2 - Question Disinfectants and antimicrobial surfaces (AMCs) are important tools to prevent the spread of pathogens and antimicrobial resistant bacteria. However, concerns have been raised about the possibility for the evolution and selection of resistance against disinfectants and AMCs. In turn, resistance against disinfectants and AMCs can be associated to antibiotic resistance due to cross-resistance - a single mechanism conferring resistance to a disinfectant and an antibiotic- and co-resistance - two distinct mechanisms physically linked on e.g. a plasmid. The risk for resistance and cross-resistance during use of biocides (including disinfectants and AMCs) must be evaluated during authorization according to the EU biocidal product regulation. However, to date there is a lack of standardized methods that support risk assessment during the authorization process. Methods We used adaptive laboratory evolution (ALE) experiments which are based on repeated exposure of bacteria to disinfectants or AMCs. The experiments are followed by phenotypic (antimicrobial susceptibility testing) and genotypic (whole genome sequencing) characterization of the evolved strains. The basic idea of these experiments is to expose bacteria to lethal conditions and select for mutants with increased survival. This approach is fundamentally different to other ALE experiments, which commonly select for increased growth at subinhibitory concentrations. However, selection for increased survival represents a selective pressure that more realistically reflects selection under in-use conditions of disinfectants and AMCs. Results First, we studied adaptation of E. coli during repeated disinfection with benzalkonium chloride in a suspension assay. The experiments showed a 2000-fold increase in survival within 5 exposure cycles. The adaptive changes are linked to highly parallel mutations in genes related to lipid A biosynthesis, less negative cell surface charge, reduced growth rate and increased competitive ability in the presence of certain antibiotics. We use the same approach to develop standardizable ALE experiments based upon accepted standards that are used to determine the efficacy of disinfectants (EN 13697) and antimicrobial surfaces (ISO 22196). The results highlight pronounced adaptation of different test strains towards surface disinfection (benzalkonium chloride and isopropanol) and AMCs (copper). Conclusion Bacteria can adapt with increased survival towards lethal stress imposed by disinfectants and AMCs. The adaptive ability of bacteria to disinfectants and AMCs can be determined in a standardized manner. T2 - 74. Jahrestagung der Deutschen Gesellschaft für Hygiene und Mikrobiologie [DGHM] e. V. CY - Berlin, Germany DA - 05.09.2022 KW - Antimicrobial surfaces KW - ISO22196 KW - Antimicrobial resistance KW - Round robin test PY - 2022 AN - OPUS4-56432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schuehle, Florian A1 - Richter, Matthias T1 - Quality assured uptake rates for passive sampling of indoor air VOCs N2 - Generation of experimental uptake rates (UR) for > 70 VOCs (7d /100 μg m-3) Application in German Environmental Survey – VOC exposure assessment Assurance of transparency concerning UR generation and uncertainty creates basis for decision making and comparability of measurement results. Exemplarily the uncertainty u(UR) of toluene UR was modelled and determined statistically with own laboratory data (relative standard deviation of actively sampled test gas atmosphere – RSDa and n = 5 exposed passive samplers – RSDp) in line with EN 838 as well as from variation of literature UR – RSD UR,lit. T2 - Airmon 2022, 10th International Symposium on modern principles of air monitoring and biomonitoring CY - Bristol, UK DA - 06.11.2022 KW - IAQ KW - VOC KW - Diffusive sampling KW - Uptake rate PY - 2022 AN - OPUS4-56583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbrich, Adelina-Elisa A1 - An Stepec, Biwen Annie A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Deciphering microbiological influenced corrosion processes on steel with single cell-ICP-ToF-MS N2 - Microbiologically influenced corrosion (MIC) is a highly unpredictable process dictated by the environment, microorganisms, and the respective electron source. Interaction pathways between cells and the metal surface remain unclear. The development of this novel single cell-inductively coupled plasma-time of flight-mass spectrometry analytical method and a MIC-specific staining procedure facilitate the investigation of steel-MIC interactions. With this it is possible to analyze the multi-elemental fingerprint of individual cells. The detection method revealed elemental selectivity for the corrosive methanogenic archaeal strain Methanobacterium-affiliated IM1. The interface between material and environmental analysis thus receives special attention, e.g., when considering MIC on solid steel. Hence, the possible uptake of individual elements from different steel samples is investigated. Results showed the cells responded at a single-cell level to the different types of supplemented elements and displayed the abilities to interact with chromium, vanadium, titanium, cobalt, and molybdenum from solid metal surfaces. The information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials research. References. T2 - Future WiNS CY - Berlin, Germany DA - 07.12.2022 KW - Single cell KW - Microbiological influenced corrosion MIC KW - Sc-ICP-ToF-MS KW - Method development KW - Ir DNA staining approach KW - Carbon steel corrosion PY - 2022 AN - OPUS4-56567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Biocides Used as Material Preservatives Modify Rates of De Novo Mutation And Horizontal Gene Transfer in Bacteria N2 - Antimicrobial resistance (AMR) is an important global health problem. The environment has been regocnized as an improtant compartment for the occurance, evolution and transmission of AMR. Biocides used as material preservatives are in contact with the environment and natural microbial communities through direct application and passive leaching from protected materials. It has been shown that environmental contaminants, such as antibiotics, metals and pesticides, can affect resistance evolution and spread by modifying the underlying processes of de novo mutagenesis, horizontal gene transfer and selection. However, it is unknown if material preservatives are involved in these processes and thereby can also drive AMR in the environment. Here, we investigate the effect of material preservatives on rates of de novo mutation and horizontal gene transfer (HGT) in Escherichia coli and the model soil microorganisms Acinetobacter baylyi and Bacillus subtilis. To this end, we determined the effects of material preservatives on the mutation rates and HGT with the Luria-Delbrück fluctuation assay and a conjugation assay with the broad host-range plasmid pKJK5 and a transformation assay. Our data shows that the quaternary ammonium compound DDAC, copper, the pyrethroid insecticide permethrin and the azole fungicide propiconazole significantly increase mutation rates in E. coli, whereas A. baylyi and B. subtilis are not significantly affected. Moreover, we show that the carbamate IPBC and the insecticide permethrin affect HGT in a concentration dependent manner. Investigations with reporter strains for bacterial stress response pathways show that induction of the general stress response (rpoS) and components of the SOS response (recA) underlie the effects of most biocides on mutation rates and HGT. Taken together, our data is important for assessing the contribution of biocides on AMR evolution and spread in the environment. T2 - World Microbe Forum (ASM, FEMS) CY - Online meeting DA - 20.06.2021 KW - Biocides KW - Horizontal gene transfer KW - Mutation rate PY - 2021 UR - https://www.abstractsonline.com/pp8/#!/9286/presentation/11692 AN - OPUS4-54211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Eileen A1 - Nitsche, Sarah A1 - Gorbushina, Anna A1 - Schumacher, Julia T1 - Tools for Knufia petricola: new techniques for CRISPR/Cas9-based genome editing N2 - Black microcolonial fungi represent a group of ascomycetes with similar adaptations for existing in natural and anthropogenically created extreme habitats. They exhibit slow yeast-like or meristematic growth, do not form specialized reproduction structures and accumulate the black pigment 1,8-dihydroxynaphthalene (DHN) in the multilayered cell walls. We chose the rock inhabitant Knufia petricola of the Chaetothyriales as a representative for developing methods for genetic manipulation, simulation of mineral weathering and study of symbiotic interactions. Here, we report on the expansion of the genetic toolkit by more efficient multiplex CRISPR/Cas9 using a plasmid-based system for expression of Cas9 and multiple sgRNAs and three additional resistance selection markers. The targeted integration of expression constructs by replacement of essential genes for pigment synthesis allows for an additional color screening of the transformants. The black-pink screening due to the elimination of pks1 (melanin) was applied for promoter studies using GFP fluorescence as reporter, while the black-white screening due to the concurrent elimination of pks1 (melanin) and phs1 (carotenoids) was used to identify transformants that contain the two expression constructs for co-localization or bimolecular fluorescence complementation (BiFC) studies. In addition, two intergenic regions (igr1, igr2) were identified in which expression constructs can be inserted without causing obvious phenotypes. Plasmids of the pNXR-XXX series (Schumacher, 2012) and new compatible entry plasmids were used for fast and easy generation of expression constructs and are suitable for use in other fungal systems as well. T2 - 31st Fungal Genetics Conference CY - USA, CA, Pacific Grove DA - 15.03.2022 KW - Microcolonial fungi KW - Genetic engineering KW - Fluorescent proteins PY - 2022 AN - OPUS4-54586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Del Mastro, G. A1 - Hammerstaedt, J. A1 - Mocella, V. A1 - Rabin, Ira T1 - XRF Ink analysis of selected fragments from the Herculaneum collection N2 - Hundreds of papyrus rolls, carbonized during the 79CE eruption of Mount Vesuvius, were discovered in 1754 at Herculaneum. Sophisticated mechanical methods for unrolling the best-preserved scrolls have been applied, with varying success. However, such processes have been abandoned, to prevent risk from irremediable damage or loss and to preserve the integrity of the extremely fragile rolls. Following the development of X-ray based non-invasive techniques, attempts to virtually unroll the scrolls were made. The most common ink in Antiquity was carbon-based, and the main element of carbonized papyrus is carbon, making these investigations difficult. However, some attempts with synchrotron X-ray phase-contrast tomography (XPCT) were successful. Recently, the identification of antique inks containing metals raised hope that if some of the inks contain metal the rolls can be virtually unrolled using conventional CT- technique. We investigated the inks of a selection of partially unrolled fragments stored at the Biblioteca Nazionale di Napoli with X-ray fluorescence in order to select the best candidates for tomography. Despite the many difficulties (analysis of several layers sticking together, letters barely visible, difficulty to separate contribution from the ink and from the papyrus, inhomogeneity of the support, fragility of the fragments…), encouraging results were found, with a number of inks from Greek fragments found to contain additions to the soot (Fe, Pb, Cu P). T2 - International Symposium on Archaeometry CY - Online meeting DA - 16.05.2022 KW - XRF KW - Ink KW - Herculaneum KW - Papyrus PY - 2022 AN - OPUS4-54892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - An, Biwen A1 - Wurzler, Nina A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Development of a MIC single archaea-ICP-ToF-MS-method for analysis of various elements in solid steel samples N2 - ICP-ToF (Flugzeitanalysator, engl. time of flight)-MS ermöglicht den Multielement Fingerabdruck einzelner Zellen (single cell) zu analysieren. Die single cell-ICP-ToF-MS kommt bei dem vorgestellten Poster bei der Analyse von Archaeen, die an mikrobiell beeinflusster Korrosion (engl. microbiologically influenced corrosion, MIC) von Stahl eine Rolle spielen, zum Einsatz. Mittels sc-ICP-ToF-MS wird die mögliche Aufnahme von einzelnen Elementen aus dem jeweiligen Stahl untersucht – die erhaltenen Informationen fließen zukünftig in die Aufklärung zugrunde liegender Mechanismen sowie Entwicklung möglicher Materialschutzkonzepte ein. Die Arbeiten Verknüpfen moderne Methoden der Analytical Sciences mit Materialien. T2 - Tag der Chemie 2021 CY - Online meeting DA - 06.07.2021 KW - SC-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea PY - 2021 AN - OPUS4-52941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -