TY - JOUR A1 - Guterman, R. A1 - Miao, H. A1 - Cataldo, V. A. A1 - Antonietti, M. A1 - Dimke, Thomas A1 - Stephan, Ina T1 - Thioimidazolium salts as a platform for nonvolatile alkylators and degradable antiseptics N2 - ABSTRACT: A collection of thioimidazolium salts were synthesized and used as a new class of nonvolatile alkylating agents. Their nonvolatility prevents exposure during use or handling and are thus drastically safer than conventional alkylating agents. We discovered that thioimidazolium Iodide salts cannot release volatile compounds in the solid state, but instead only decompose when molten. Since decomposition proceeds via alkyl iodide elimination, SN2 of iodide on the thioimidazolium cation is constrained in the solid state, and instead can occur only upon melting when ions are mobile. By smart design of these alkylators, the melting point and thus the decomposition temperature of these salts can be increased from 106 to 169 °C and release negligible volatile organic compounds prior to melting. Thioimidazolium-bis(trifluoromethanesulfonyl)imide (TFSI) ionic liquids act as a completely nonvolatile and air-stable TFSI-based alkylating agent and can be used for high-throughput Synthesis of TFSI ionic liquids without solvent. Alkyl groups from methyl to dodecyl can be transferred to a nucleophile and the product purified by sublimation of the thione byproduct, which can then be recycled. We also found that thioimidazolium salts with a dodecyl chain are bactericidal, yet can hydrolyze in water to form benign neutral products, and thus wont accumulate in the environment. These results demonstrate that thioimidazolium salts are a designable platform for the pursuit of safer and more environmentally friendly alkylating and antiseptic agents. KW - Alkylating agents KW - Decomposition point KW - Melting point KW - Nonvolatile KW - One-step ionic liquids synthesis KW - Antiseptic agents PY - 2018 DO - https://doi.org/10.1021/acssuschemeng.8b03874 SN - 2168-0485 VL - 6 IS - 11 SP - 15434 EP - 15440 PB - American Chemical Society CY - Washington, DC AN - OPUS4-46904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brischke, C. A1 - Bollmus, S. A1 - Melcher, E. A1 - Stephan, Ina T1 - Biological durability and moisture ynamics of Dawn redwood (Metasequoia glyptostroboides) and Port Orford cedar (Chamaecyparis lawsoniana) N2 - Numerous non-native tree species are given attention with respect to the reforestation of calamity areas in Europe. Among them, several species may form durable wood which can be used for outdoor applications, but differences in wood durability are expected between original and European growth sites. This study aimed at examining the biological durability against wooddestroying fungi and water permeability of German-grown Dawn redwood (Metasequoia glyptostroboides) and Port Orford cedar (Chamaecyparis lawsoniana). The heartwood of both wood species was assigned to durability class 4 (DC 4, less durable) in soil contact and DC 1–4 (very to less durable) against wood-destroying basidiomycetes. However, according to the Meyer-Veltrup model, their material resistance dose was notably higher compared to the reference species Norway spruce (Picea abies), and the resulting service life of above ground structures should be a multiple of the reference. KW - Natural durability KW - Fungal decay KW - Moisture performance KW - Permeability KW - Resistance model KW - Water uptake PY - 2022 DO - https://doi.org/10.1080/17480272.2022.2101941 SN - 1748-0272 SP - 1 EP - 11 PB - Taylor & Francis CY - London AN - OPUS4-55490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Franziska, Pietsch A1 - Nordholt, Niclas A1 - Heidrich, Gabriele A1 - Schreiber, Frank T1 - Prevalent Synergy and Antagonism Among Antibiotics and Biocides in Pseudomonas aeruginosa N2 - Antimicrobials can exert specific physiological effects when used in combination that are different from those when applied alone. While combination effects have been extensively mapped for antibiotic-antibiotic combinations, the combination effects of antibiotics with antimicrobials used as biocides or antiseptics have not been systematically investigated. Here, we investigated the effects of combinations of antibiotics (meropenem, gentamicin, and ciprofloxacin) and substances used as biocides or antiseptics [octenidine, benzalkonium chloride, cetrimonium bromide, chlorhexidine, Povidone-iodine, silver nitrate (AgNO3), and Ag-nanoparticles] on the planktonic growth rate of Pseudomonas aeruginosa. Combination effects were investigated in growth experiments in microtiter plates at different concentrations and the Bliss interaction scores were calculated. Among the 21 screened combinations, we find prevalent combination effects with synergy occurring six times and antagonism occurring 10 times. The effects are specific to the antibiotic-biocide combination with meropenem showing a tendency for antagonism with biocides (6 of 7), while gentamicin has a tendency for synergy (5 of 7). In conclusion, antibiotics and biocides or antiseptics exert physiological combination effects on the pathogen P. aeruginosa. These effects have consequences for the efficacy of both types of substances and potentially for the selection of antimicrobial resistant strains in clinical applications with combined exposure (e.g., wound care and coated biomaterials). KW - Synergy KW - Antagonism KW - Suppression KW - Biocides KW - Antibiotics KW - Pseudomonas aeruginosa PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520845 DO - https://doi.org/10.3389/fmicb.2020.615618 VL - 11 SP - Article 615618 PB - Frontiers CY - Lausanne AN - OPUS4-52084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nordholt, Niclas A1 - O'Hara, Kate A1 - Resch-Genger, Ute A1 - Blaskovich, M. A1 - Rühle, Bastian A1 - Schreiber, Frank T1 - A fluorescently labelled quaternary ammonium compound (NBD-DDA) to study resistance mechanisms in bacteria N2 - Quaternary ammonium compounds (QACs) are widely used as active agents in disinfectants, antiseptics, and preservatives. Despite being in use since the 1940s, there remain multiple open questions regarding their detailed mode-of-action and the mechanisms, including phenotypic heterogeneity, that can make bacteria less susceptible to QACs. To facilitate studies on resistance mechanisms towards QACs, we synthesized a fluorescent quaternary ammonium compound, namely N-dodecyl-N,N-dimethyl-[2-[(4-nitro-2,1,3-benzoxadiazol-7-yl)amino]ethyl]azanium-iodide (NBD-DDA). NBD-DDA is readily detected by flow cytometry and fluorescence microscopy with standard GFP/FITC-settings, making it suitable for molecular and single-cell studies. As a proof-of-concept, NBD-DDA was then used to investigate resistance mechanisms which can be heterogeneous among individual bacterial cells. Our results reveal that the antimicrobial activity of NBD-DDA against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa is comparable to that of benzalkonium chloride (BAC), a widely used QAC, and benzyl-dimethyl-dodecylammonium chloride (BAC12), a mono-constituent BAC with alkyl-chain length of 12 and high structural similarity to NBD-DDA. Characteristic time-kill kinetics and increased tolerance of a BAC tolerant E. coli strain against NBD-DDA suggest that the mode of action of NBD-DDA is similar to that of BAC. As revealed by confocal laser scanning microscopy (CLSM), NBD-DDA is preferentially localized to the cell envelope of E. coli, which is a primary target of BAC and other QACs. Leveraging these findings and NBD-DDA‘s fluorescent properties, we show that reduced cellular accumulation is responsible for the evolved BAC tolerance in the BAC tolerant E. coli strain and that NBD-DDA is subject to efflux mediated by TolC. Overall, NBD-DDA’s antimicrobial activity, its fluorescent properties, and its ease of detection render it a powerful tool to study resistance mechanisms of QACs in bacteria and highlight its potential to gain detailed insights into its mode-of-action. KW - Antimicrobial resistance KW - Bacteria KW - Disinfection KW - Biocides PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563811 DO - https://doi.org/10.3389/fmicb.2022.1023326 SN - 1664-302X IS - 13 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-56381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, M. A1 - Schlaich, C. A1 - Zhang, J. A1 - Donskyi, Ievgen A1 - Schwibbert, Karin A1 - Schreiber, Frank A1 - Xia, Y. A1 - Radnik, Jörg A1 - Schwerdtle, T. A1 - Haag, R. T1 - Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction N2 - Bacterial infection and osteogenic integration are the two main problems that cause severe complications after surgeries. In this study, the antibacterial and osteogenic properties were simultaneously introduced in biomaterials, where copper nanoparticles (CuNPs) were generated by in situ reductions of Cu ions into a mussel-inspired hyperbranched polyglycerol (MI-hPG) coating via a simple dip-coating method. This hyperbranched polyglycerol with 10 % catechol groups’ modification presents excellent antifouling property, which could effectively reduce bacteria adhesion on the surface. In this work, polycaprolactone (PCL) electrospun fiber membrane was selected as the substrate, which is commonly used in biomedical implants in bone regeneration and cardiovascular stents because of its good biocompatibility and easy post-modification. The as-fabricated CuNPs-incorporated PCL membrane [PCL-(MI-hPG)-CuNPs] was confirmed with effective antibacterial performance via in vitro antibacterial tests against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and multi-resistant E. coli. In addition, the in vitro results demonstrated that osteogenic property of PCL-(MI-hPG)-CuNPs was realized by upregulating the osteoblast-related gene expressions and protein activity. This study shows that antibacterial and osteogenic properties can be balanced in a surface coating by introducing CuNPs. KW - Mussel-inspired coating KW - CuNPs KW - Multi-resistant bacteria KW - Antibacterial KW - Antifouling KW - Osteogenesis PY - 2021 DO - https://doi.org/10.1016/j.jmst.2020.08.011 SN - 1005-0302 VL - 68 SP - 160 EP - 171 PB - Elsevier Ltd. AN - OPUS4-51519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance during periodic disinfection N2 - Biocides used as disinfectants are important to prevent the transmission of pathogens, especially during the current antibiotic resistance crisis. This crisis is exacerbated by phenotypically tolerant persister subpopulations that can survive transient antibiotic Treatment and facilitate resistance evolution. Here, we show that E. coli displays persistence against a widely used disinfectant, benzalkonium chloride (BAC). Periodic, persister-mediated failure of disinfection rapidly selects for BAC tolerance, which is associated with reduced cell Surface charge and mutations in the lpxM locus, encoding an enzyme for lipid A biosynthesis. Moreover, the fitness cost incurred by BAC tolerance turns into a fitness benefit in the presence of antibiotics, suggesting a selective advantage of BAC-tolerant mutants in antibiotic environments. Our findings highlight the links between persistence to disinfectants and resistance evolution to antimicrobials. KW - Persistence KW - Biocides KW - Evolution KW - Cross-resistance KW - Biocide tolerance KW - Disinfection PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538532 DO - https://doi.org/10.1038/s41467-021-27019-8 SN - 2041-1723 VL - 12 IS - 1 SP - 6792 PB - Springer AN - OPUS4-53853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavasolyzadeh, Zeynab A1 - Tang, Peng A1 - Hahn, Marc Benjamin A1 - Hweidi, Gada A1 - Nordholt, Niclas A1 - Haag, Rainer A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - 2D and 3D Micropatterning of Mussel‐Inspired Functional Materials by Direct Laser Writing N2 - AbstractThis work addresses the critical need for multifunctional materials and substrate‐independent high‐precision surface modification techniques that are essential for advancing microdevices and sensing elements. To overcome existing limitations, the versatility of mussel‐inspired materials (MIMs) is combined with state‐of‐the‐art multiphoton direct laser writing (DLW) microfabrication. In this way, 2D and 3D MIM microstructures of complex designs are demonstrated with sub‐micron to micron resolution and extensive post‐functionalization capabilities. This study includes polydopamine (PDA), mussel‐inspired linear, and dendritic polyglycerols (MI‐lPG and MI‐dPG), allowing their direct microstructure on the substrate of choice with the option to tailor the patterned topography and morphology in a controllable manner. The functionality potential of MIMs is demonstrated by successfully immobilizing and detecting single‐stranded DNA on MIM micropattern and nanoarray surfaces. In addition, easy modification of MIM microstructure with silver nanoparticles without the need of any reducing agent is shown. The methodology developed here enables the integration of MIMs in advanced applications where precise surface functionalization is essential. KW - Direct laser writing KW - Mussel-inspired materials KW - Polyglycerol KW - Polydopamine KW - Micropatterning PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588778 DO - https://doi.org/10.1002/smll.202309394 SN - 1613-6829 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-58877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nordholt, Niclas A1 - van Heerden, J. H. A1 - Bruggeman, F. J. T1 - Biphasic Cell-Size and Growth-Rate Homeostasis by Single Bacillus subtilis Cells N2 - The growth rate of single bacterial cells is continuously disturbed by random fluctuations in biosynthesis rates and by deterministic cell-cycle events, such as division, genome duplication, and septum formation. It is not understood whether, and how, bacteria reject these growth-rate disturbances. Here, we quantified growth and constitutive protein expression dynamics of single Bacillus subtilis cells as a function of cell-cycle progression. We found that, even though growth at the population level is exponential, close inspection of the cell cycle of thousands of single Bacillus subtilis cells reveals systematic deviations from exponential growth. Newborn cells display varying growth rates that depend on their size. When they divide, growth-rate Variation has decreased, and growth rates have become birth size independent. Thus, cells indeed compensate for growth-rate disturbances and achieve growth-rate homeostasis. Protein synthesis and growth of single cells displayed correlated, biphasic dynamics from cell birth to division. During a first phase of variable duration, the absolute rates were approximately constant and cells behaved as sizers. In the second phase, rates increased, and growth behavior exhibited characteristics of a timer strategy. These findings demonstrate that, just like size homeostasis, growth-rate homeostasis is an inherent property of single cells that is achieved by cell-cycle-dependent rate adjustments of biosynthesis and growth. KW - Bacterial cell cycle KW - Single cell microbiology KW - Bacillus subtilis KW - Growth-rate homeostasis KW - Biphasic growth PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510689 DO - https://doi.org/10.1016/j.cub.2020.04.030 VL - 30 IS - 12 SP - 2238 EP - 2247 PB - Cell Press AN - OPUS4-51068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bandow, N. A1 - Aitken, M. D. A1 - Geburtig, Anja A1 - Kalbe, Ute A1 - Piechotta, Christian A1 - Schoknecht, Ute A1 - Simon, Franz-Georg A1 - Stephan, Ina T1 - Using Environmental Simulations to Test the Release of Hazardous Substances from Polymer-Based Products: Are Realism and Pragmatism Mutually Exclusive Objectives? N2 - The potential release of hazardous substances from polymer-based products is currently in the focus of environmental policy. Environmental simulations are applied to expose such products to selected aging conditions and to investigate release processes. Commonly applied aging exposure types such as solar and UV radiation in combination with water contact, corrosive gases, and soil contact as well as expected general effects on polymers and additional ingredients of polymer-based products are described. The release of substances is based on mass-transfer processes to the material surfaces. Experimental approaches to investigate transport processes that are caused by water contact are presented. For tailoring the tests, relevant aging exposure types and release quantification methods must be combined appropriately. Several studies on the release of hazardous substances such as metals, polyaromatic hydrocarbons, flame retardants, antioxidants, and carbon nanotubes from polymers are summarized exemplarily. Differences between natural and artificial exposure tests are discussed and demonstrated for the release of flame retardants from several polymers and for biocides from paints. Requirements and limitations to apply results from short-term artificial environmental exposure tests to predict long-term environmental behavior of polymers are presented. KW - Environmental simulations KW - Polymer-based products KW - Artificial weathering KW - Degradation KW - Leaching KW - Soil contact PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509310 DO - https://doi.org/10.3390/ma13122709 SN - 1996-1944 VL - 13 IS - 12 SP - Paper 2709, 22 PB - MDPI CY - Basel, Switzerland AN - OPUS4-50931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -