TY - JOUR A1 - Vandrich, Jasmina A1 - Pfeiffer, F. A1 - Alfaro Espinoza, Gabriela A1 - Kunte, Hans-Jörg T1 - Contribution of mechanosensitive channels to osmoadaptation and ectoine excretion in Halomonas elongata N2 - For osmoadaptation the halophilic bacterium Halomonas elongata synthesizes as its main compatible solute the aspartate derivative ectoine. H. elongata does not rely entirely on synthesis but can accumulate ectoine by uptake from the surrounding environment with the help of the osmoregulated transporter TeaABC. Disruption of the TeaABC-mediated ectoine uptake creates a strain that is constantly losing ectoine to the medium. However, the efflux mechanism of ectoine in H. elongata is not yet understood. H. elongata possesses four genes encoding mechanosensitive channels all of which belong to the small conductance type (MscS). Analysis by qRT-PCR revealed a reduction in transcription of the mscS genes with increasing salinity. The response of H. elongata to hypo- and hyperosmotic shock never resulted in up-regulation but rather in downregulation of mscS transcription. Deletion of all four mscS genes created a mutant that was unable to cope with hypoosmotic shock. However, the knockout mutant grew significantly faster than the wildtype at high salinity of 2 M NaCl, and most importantly, still exported 80% of the ectoine compared to the wildtype. We thus conclude that a yet unknown system, which is independent of mechanosensitive channels, is the major export route for ectoine in H. elongata. KW - Halomonas elongata KW - Ectoine KW - Osmotic shock KW - Solute excretion KW - Osmoadaptation KW - Mechanosensitive channel KW - MscS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507229 DO - https://doi.org/10.1007/s00792-020-01168-y VL - 24 SP - 421 EP - 432 PB - Springer AN - OPUS4-50722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trimpert, J. A1 - Groenke, N. A1 - Kunec, D. A1 - Eschke, K. A1 - He, Shulin A1 - McMahon, Dino Peter A1 - Osterrieder, N. T1 - A proofreading-impaired herpesvirus generates populations with quasispecies-like structure N2 - RNA virus populations are composed of highly diverse individuals that form a cloud of related sequences commonly referred to as a ‘quasispecies’1–3. This diversity arises as a consequence of low-fidelity genome replication4,5. By contrast, DNA Virus populations contain more uniform individuals with similar fitness6. Genome diversity is often correlated with increased Fitness in RNA viruses, while DNA viruses are thought to require more faithful genome replication. During DNA replication, erroneously incorporated bases are removed by a 3′-5′ exonuclease, a highly conserved enzymatic function of replicative DNA but not RNA polymerases. This proofreading process enhances replication fidelity and ensures the genome integrity of DNA organisms, including large DNA viruses7. Here, we show that a herpesvirus can tolerate impaired exonucleolytic proofreading, resulting in DNA virus populations, which, as in RNA viruses8, are composed of highly diverse genotypes of variable individual fitness. This indicates that herpesvirus mutant diversity may compensate for individual Fitness loss. Notably, in vivo infection with diverse virus populations results in a marked increase in virulence compared to genetically homogenous parental virus. While we cannot exclude that the increase in virulence is caused by selection of and/or interactions between individual genotypes, our findings are consistent with quasispecies dynamics. Our results contrast with traditional views of DNA virus replication and evolution, and indicate that a substantial increase in population diversity can lead to higher virulence. KW - Marek's virus KW - Virulence KW - Quasispecies KW - Evolution PY - 2019 DO - https://doi.org/10.1038/s41564-019-0547-x SN - 2058-5276 N1 - Corrigendum: Nature Microbiology 4 (2019) 2025 VL - 4 SP - 2175 EP - 2183 PB - Nature Publishing Group CY - London AN - OPUS4-48896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radunz, Sebastian A1 - Andresen, Elina A1 - Würth, Christian A1 - Koerdt, Andrea A1 - Rune Tschiche, Harald A1 - Resch-Genger, Ute T1 - Simple self-referenced luminescent pH sensors based on upconversion nanocrystals and pH-sensitive fluorescent BODIPY dyes N2 - We present the design and fabrication of pH responsive ratiometric dual component sensor systems based on multicolor emissive upconversion nanoparticles (UCNP) and pH sensitive BODIPY dyes with tunable pKa values embedded into a polymeric hydrogel matrix. The use of NIR excitable NaYF4:Yb3+,Tm3+ UCNPs enables background free read-out. Furthermore, the spectrally matching optical properties of the UCNPs and the dyes allow the UCNPs to serve as excitation light source for the analyteresponsive BODIPY as well as intrinsic reference. The blue upconversion luminescence (UCL) of NaYF4:Yb3+,Tm3+ UCNPs excited at 980 nm, that overlaps with the absorption of the pH-sensitive fluorophore, provides reabsorption based excitation of the dye, the spectrally distinguishable green fluorescence of which is switched ON upon protonation, preventing photoinduced electron transfer (PET) within the dye moiety, and the pH-inert red UCL act as reference. The intensities ratios of the dye’s fluorescence and the analyte-inert red Tm3+ UCL correlate directly with pH, which was successfully utilized for Monitoring timedependent pH changes of a suspension of quiescent E. coli metabolizing D-glucose. KW - pH sensor KW - UpConversion PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b01174 SN - 0003-2700 SN - 1520-6882 VL - 91 SP - 7756 EP - 7764 PB - acs publications AN - OPUS4-48490 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - An, Biwen Annie A1 - Deland, Eric A1 - Sobol, Oded A1 - Yao, Jizheng A1 - Skovhus, T. L. A1 - Koerdt, Andrea T1 - The differences in the corrosion product compositions of Methanogen-induced microbiologically influenced corrosion (Mi-MIC) between static and dynamic growth conditions N2 - Currently, corrosion rates (CR) and/or corrosion products (CP) obtained for methanogen-induced microbiologically influenced corrosion (Mi-MIC) on carbon steel are mainly analyzed from static-incubations. By using a multiport-flow-column, much higher CRs (0.72 mm/yr) were observed, indicating static-incubations are not suitable for determining the corrosive potential of Mi-MIC. With the combination of various analytical methods (ToF-SIMS/SEM-EDS/SEM-FIB) and contrary to previously published data, we observed that CPs contained phosphorus, oxygen, magnesium, calcium and iron but lacked carbon-related species (e.g. siderite). Overall, siderite nucleation is disrupted by methanogens, as they convert aqueous bicarbonate into carbon dioxide for methanogenesis resulting in increased localized corrosion. KW - Carbon steel KW - Modelling studies KW - SIMS KW - SEM KW - Reactor conditions KW - Microbiologically influenced corrosion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517632 DO - https://doi.org/10.1016/j.corsci.2020.109179 SN - 0010-938X VL - 180 SP - 9179 PB - Elsevier AN - OPUS4-51763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Varadarajan, A. A1 - Allan, R. A1 - Valentin, J. A1 - Castañeda Ocampo, O. A1 - Somerville, V. A1 - Buhmann, M. A1 - West, J. A1 - Skipp, Paul A1 - van der Mei, H. A1 - Ren, Q. A1 - Schreiber, Frank A1 - Webb, J. A1 - Pietsch, Franziska A1 - Ahrens, C. T1 - An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1 N2 - Pseudomonas aeruginosa MPAO1 is the parental strain of the widely utilized transposon mutant collection for this important clinical pathogen. Here, we validate a model system to identify genes involved in biofilm growth and biofilm-associated antibiotic resistance. Our model employs a genomics-driven workflow to assemble the complete MPAO1 genome, identify unique and conserved genes by comparative genomics with the PAO1 reference strain and genes missed within existing assemblies by proteogenomics. Among over 200 unique MPAO1 genes, we identified six general essential genes that were overlooked when mapping public Tn-seq data sets against PAO1, including an antitoxin. Genomic data were integrated with phenotypic data from an experimental workflow using a user-friendly, soft lithography-based microfluidic flow chamber for biofilm growth and a screen with the Tn-mutant library in microtiter plates. The screen identified hitherto unknown genes involved in biofilm growth and antibiotic resistance. Experiments conducted with the flow chamber across three laboratories delivered reproducible data on P. aeruginosa biofilms and validated the function of both known genes and genes identified in the Tn-mutant screens. Differential Protein abundance data from planktonic cells versus biofilm confirmed the upregulation of candidates known to affect biofilm formation, of structural and secreted proteins of type VI secretion systems, and provided proteogenomic evidence for some missed MPAO1 genes. This integrated, broadly applicable model promises to improve the mechanistic understanding of biofilm formation, antimicrobial tolerance, and resistance evolution in biofilms. KW - Biofilms PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515108 DO - https://doi.org/10.1038/s41522-020-00154-8 VL - 6 IS - 1 SP - Article number: 46 PB - Springer Nature CY - Singapore AN - OPUS4-51510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haustein, T. A1 - Busweiler, Sabine A1 - Haustein, V. A1 - von Laar, C. A1 - Plarre, Rüdiger T1 - Laboratory breeding of Korynetes caeruleus (Coleoptera: Cleridae) for the biological of Anobium punctatum) (Coleoptera, Ptinidae) N2 - Larvae and adults of Korynetes caeruleus (de Geer 1775) (Coleoptera: Cleridae) were collected from old churches and reared in the laboratory on Anobium punctatum (de Geer 1774) (Coleoptera: Ptinidae). Breeding success of K. caeruleus was low, but basic parameters of this species’ developmental cycle were identifi ed. At 21°C and 75% relative humidity and a fourmonth cold period at 4°C, the development of K. caeruleus from egg to adult appearance lasted 2 years. The pupal stage may be reached and completed after one and a half years. Feeding on larvae of A. punctatum by larvae of K. caeruleus was observed and consisted of a combination of sucking haemolymph and consuming body parts. The sickle-like mandibles of larvae of K. caeruleus penetrate the cuticle of prey larvae; this is followed by pumping and sucking body movements. Adult beetles of A. punctatum were not attacked by K. caeruleus larvae. Feeding behaviour of adult K. caeruleus was not investigated. KW - Cultural heritage KW - Coleoptera KW - Korynetes caeruleus KW - Cleridae KW - Ptinidae KW - Anobium punctatum KW - Biological pest control KW - Life history data KW - Laboratory breeding KW - Wood protection PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494999 DO - https://doi.org/10.14411/eje.2019.038 SN - 1802-8829 VL - 116 SP - 362 EP - 371 PB - České Budějovice AN - OPUS4-49499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bucek, A. A1 - Sobotnik, J. A1 - He, Shulin A1 - Shi, M. A1 - McMahon, Dino Peter A1 - Holmes, E.C. A1 - Roisin, Y. A1 - Lo, N. A1 - Bourguignon, T. T1 - Evolution of Termite Symbiosis Informed by Transcriptome-Based Phylogenies N2 - Termitidae comprises 80% of all termite species that play dominant decomposer roles in Tropical cosystems. Two major events during Termite evolution were the loss of cellulolytic gut protozoans in the ancestor of Termitidae and the subsequent gain in the termitid subfamily Macrotermitinae of fungal symbionts cultivated externally in ‘‘combs’’ constructed within the nest. How these symbiotic transitions occurred remains unresolved. Phylogenetic analyses of mitochondrial data previously suggested that Macrotermitinae is the earliest branching termitid lineage, followed soon after by Sphaerotermitinae, which cultivates bacterial symbionts on combs inside its nests. This has led to the hypothesis that comb building was an important evolutionary step in the loss of gut protozoa in ancestral termitids. We sequenced genomes and transcriptomes of 55 termite species and reconstructed phylogenetic trees from up to 4,065 orthologous genes of 68 species. We found strong support for a novel sister-group relationship between the bacterial comb-building Sphaerotermitinae and fungus comb-building Macrotermitinae. This key finding indicates that comb building is a derived trait within Termitidae and that the creation of a comb-like ‘‘external rumen’’ involving bacteria or fungi may not have driven the loss of protozoa from ancestral termitids, as previously hypothesized. Instead, associations with gut prokaryotic symbionts, combined with dietary shifts from wood to other plant-based substrates, may have played a more important role in this symbiotic transition. Our phylogenetic tree provides a platform for future studies of comparative termite evolution and the evolution of symbiosis in this taxon. KW - Molecular clock KW - Fungiculture KW - Gut symbionts KW - Insect evolution KW - Isoptera PY - 2019 DO - https://doi.org/10.1016/j.cub.2019.08.076 VL - 29 IS - 21 SP - 3728 EP - 3734.e4 PB - Elsevier Ltd. AN - OPUS4-49647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, U. A1 - McMahon, Dino Peter A1 - Rolff, J. T1 - Exposure of the wild bee Osmia bicornis to the honey bee pathogen Nosema ceranae N2 - Wild bees are important pollinators for agricultural crops and solitary species such as Osmia bicornis are particularly suitable for pollination management. Wild bees share floral resources with managed honey bees and may be exposed to emerging infectious diseases. Although studies have explored the prevalence of pathogens in solitary wild bee species, data regarding the impact of pathogens on solitary bee health are lacking. We carried out experiments examining whether the solitary bee species O. bicornis is susceptible to infection with the emerging pathogen The results obtained indicate that N. ceranae may be able to infect O. bicornis but its impact on host fitness is negligible: survival rates did not differ between Control and inoculated bees, although male survival was marginally lower after infection. To explore the possible field-relevance of our findings, we collected wild bees near an infected and a non-infected hive and showed that N. ceranae was shared between managed and wild bees, although only the in presence of infected honey bees. The findings of the present study show that O. bicornis is susceptible to pathogen spillover and could act as a potential reservoir host for N. ceranae in pollinator networks. Additional studies on this species incorporating sublethal effects, multiple infections and other interacting stressors are warranted. KW - Wild bees KW - Nosema ceranae KW - Osmia bicornis KW - Pathogen spillover KW - Survival rates PY - 2019 DO - https://doi.org/10.1111/afe.12338 SN - 1461-9555 SN - 1461-9563 VL - 21 IS - 4 SP - 363 EP - 371 PB - Wiley AN - OPUS4-49648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bramke, K. A1 - Müller, U. A1 - McMahon, Dino Peter A1 - Rolff, J. T1 - Exposure of Larvae of the Solitary Bee Osmia bicornis to the Honey Bee Pathogen Nosema ceranae Aects Life History N2 - Wild bees are important pollinators of wild plants and agricultural crops and they are threatened by several environmental stressors including emerging pathogens. Honey bees have been suggested as a potential source of pathogen spillover. One prevalent pathogen that has recently emerged as a honey bee disease is the microsporidian Nosema ceranae. While the impacts of N. ceranae in honey bees are well documented, virtually nothing is known about its effects in solitary wild bees. The solitary mason bee Osmia bicornis is a common pollinator in orchards and amenable to Commercial management. Here, we experimentally exposed larvae of O. bicornis to food contaminated with N. ceranae and document spore presence during larval development. We measured mortality, growth parameters, and timing of pupation in a semi-field experiment. Hatched individuals were assessed for physiological state including fat body mass, wing muscle mass, and body size. We recorded higher mortality in the viable-spore-exposed group but could only detect a low number of Spores among the individuals of this treatment. Viable-spore-treated individuals with higher head capsule width had a delayed pupation start. No impact on the physiological status could be detected in hatched imagines. Although we did not find overt evidence of O. bicornis infection, our findings indicate that exposure of larvae to viable N. ceranae spores could affect bee development. KW - Bee diseases KW - Wild bees KW - Nosema ceranae KW - Osmia bicornis KW - Pathogen transmission KW - Solitary bees KW - Bee health PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-496497 DO - https://doi.org/10.3390/insects10110380 VL - 10 IS - 11 SP - 380 PB - MDPI AN - OPUS4-49649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoyer, C. A1 - Pfütze, C. A1 - Plarre, Rüdiger A1 - Trommler, U. A1 - Steinbach, S. A1 - Klutzny, Kerstin A1 - Holzer, F. A1 - Rabe, C. A1 - Höhlig, B. A1 - Schmidt, S. A1 - Roland, U. T1 - Chemical-free pest control by dielectric heating with radio waves and microwaves: Thermal effects N2 - Thermal pest control with hot air is widely accepted as an alternative to chemical methods. However, it requires relatively long treatment times owing to the low thermal conductivity of wood. Direct dielectric heating that applies radio waves or microwaves has the advantage of more homogeneous heating. However, Sound experimental data on this technique are currently rare. Therefore, the thermal treatment of wood-destroying insects with radio waves and microwaves was studied with two model pests, Anobium punctatum and Hylotrupes bajulus, and with Tenebrio molitor as a reference. The secure elimination of pests was achieved, and the corresponding treatment time was in the range of a few minutes. Temperature profiles were more homogeneous when applying radio waves. KW - Dielectric heating KW - Microwaves KW - Pest control KW - Radio waves KW - Wood protection PY - 2018 DO - https://doi.org/10.1002/ceat.201600712 SN - 1521-4125 SN - 0930-7516 VL - 41 IS - 1 SP - 108 EP - 115 PB - Wiley-VCH CY - Weinheim AN - OPUS4-43527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -