TY - JOUR A1 - Müller, U. A1 - McMahon, Dino Peter A1 - Rolff, J. T1 - Exposure of the wild bee Osmia bicornis to the honey bee pathogen Nosema ceranae N2 - Wild bees are important pollinators for agricultural crops and solitary species such as Osmia bicornis are particularly suitable for pollination management. Wild bees share floral resources with managed honey bees and may be exposed to emerging infectious diseases. Although studies have explored the prevalence of pathogens in solitary wild bee species, data regarding the impact of pathogens on solitary bee health are lacking. We carried out experiments examining whether the solitary bee species O. bicornis is susceptible to infection with the emerging pathogen The results obtained indicate that N. ceranae may be able to infect O. bicornis but its impact on host fitness is negligible: survival rates did not differ between Control and inoculated bees, although male survival was marginally lower after infection. To explore the possible field-relevance of our findings, we collected wild bees near an infected and a non-infected hive and showed that N. ceranae was shared between managed and wild bees, although only the in presence of infected honey bees. The findings of the present study show that O. bicornis is susceptible to pathogen spillover and could act as a potential reservoir host for N. ceranae in pollinator networks. Additional studies on this species incorporating sublethal effects, multiple infections and other interacting stressors are warranted. KW - Wild bees KW - Nosema ceranae KW - Osmia bicornis KW - Pathogen spillover KW - Survival rates PY - 2019 DO - https://doi.org/10.1111/afe.12338 SN - 1461-9555 SN - 1461-9563 VL - 21 IS - 4 SP - 363 EP - 371 PB - Wiley AN - OPUS4-49648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bramke, K. A1 - Müller, U. A1 - McMahon, Dino Peter A1 - Rolff, J. T1 - Exposure of Larvae of the Solitary Bee Osmia bicornis to the Honey Bee Pathogen Nosema ceranae Aects Life History N2 - Wild bees are important pollinators of wild plants and agricultural crops and they are threatened by several environmental stressors including emerging pathogens. Honey bees have been suggested as a potential source of pathogen spillover. One prevalent pathogen that has recently emerged as a honey bee disease is the microsporidian Nosema ceranae. While the impacts of N. ceranae in honey bees are well documented, virtually nothing is known about its effects in solitary wild bees. The solitary mason bee Osmia bicornis is a common pollinator in orchards and amenable to Commercial management. Here, we experimentally exposed larvae of O. bicornis to food contaminated with N. ceranae and document spore presence during larval development. We measured mortality, growth parameters, and timing of pupation in a semi-field experiment. Hatched individuals were assessed for physiological state including fat body mass, wing muscle mass, and body size. We recorded higher mortality in the viable-spore-exposed group but could only detect a low number of Spores among the individuals of this treatment. Viable-spore-treated individuals with higher head capsule width had a delayed pupation start. No impact on the physiological status could be detected in hatched imagines. Although we did not find overt evidence of O. bicornis infection, our findings indicate that exposure of larvae to viable N. ceranae spores could affect bee development. KW - Bee diseases KW - Wild bees KW - Nosema ceranae KW - Osmia bicornis KW - Pathogen transmission KW - Solitary bees KW - Bee health PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-496497 DO - https://doi.org/10.3390/insects10110380 VL - 10 IS - 11 SP - 380 PB - MDPI AN - OPUS4-49649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoyer, C. A1 - Pfütze, C. A1 - Plarre, Rüdiger A1 - Trommler, U. A1 - Steinbach, S. A1 - Klutzny, Kerstin A1 - Holzer, F. A1 - Rabe, C. A1 - Höhlig, B. A1 - Schmidt, S. A1 - Roland, U. T1 - Chemical-free pest control by dielectric heating with radio waves and microwaves: Thermal effects N2 - Thermal pest control with hot air is widely accepted as an alternative to chemical methods. However, it requires relatively long treatment times owing to the low thermal conductivity of wood. Direct dielectric heating that applies radio waves or microwaves has the advantage of more homogeneous heating. However, Sound experimental data on this technique are currently rare. Therefore, the thermal treatment of wood-destroying insects with radio waves and microwaves was studied with two model pests, Anobium punctatum and Hylotrupes bajulus, and with Tenebrio molitor as a reference. The secure elimination of pests was achieved, and the corresponding treatment time was in the range of a few minutes. Temperature profiles were more homogeneous when applying radio waves. KW - Dielectric heating KW - Microwaves KW - Pest control KW - Radio waves KW - Wood protection PY - 2018 DO - https://doi.org/10.1002/ceat.201600712 SN - 1521-4125 SN - 0930-7516 VL - 41 IS - 1 SP - 108 EP - 115 PB - Wiley-VCH CY - Weinheim AN - OPUS4-43527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ibrahim, B. A1 - McMahon, Dino Peter A1 - Hufsky, F. A1 - Beer, M. A1 - Ding, L. A1 - Le Mercier, P. A1 - Palmarini, M. A1 - Thiel, V. A1 - Marz, M. T1 - A new era of virus bioinformatics N2 - Despite the recognized excellence of virology and bioinformatics, these two communities have interacted surprisingly sporadically, aside from some pioneering work on HIV-1 and influenza. Bringing together the Expertise of bioinformaticians and virologists is crucial, since very specific but fundamental computational approaches are required for virus research, particularly in an era of big data. Collaboration between virologists and bioinformaticians is necessary to improve existing analytical tools, cloud-based systems, computational resources, data sharing approaches, new diagnostic tools, and bioinformatic training. Here, we highlight current progress and discuss potential avenues for future developments in this promising era of virus bioinformatics. We end by presenting an overview of current technologies, and by outlining some of the Major challenges and Advantages that bioinformatics will bring to the field of virology. KW - Bioinformatics virology viruses software PY - 2018 DO - https://doi.org/10.1016/j.virusres.2018.05.009 SN - 0168-1702 SN - 1872-7492 VL - 251 SP - 86 EP - 90 PB - Elsevier CY - Amsterdam AN - OPUS4-45880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ibrahim, B. A1 - Arkhipova, K. A1 - Andeweg, A.C. A1 - Posada-Céspedes, S. A1 - Enault, F. A1 - Gruber, A. A1 - Koonin, E.V. A1 - Kupczok, A. A1 - Lemey, P. A1 - McHardy, A.C. A1 - McMahon, Dino Peter A1 - Pickett, B.E. A1 - Robertson, D.L. A1 - Scheuermann, R.H. A1 - Zhernakova, A. A1 - Zwart, M.P. A1 - Schönhuth, A. A1 - Dutilh, B.E. A1 - Marz, M. T1 - Bioinformatics meets virology: The European virus bioinformatics center's second annual meeting N2 - The Second Annual Meeting of the European Virus Bioinformatics Center (EVBC), held in Utrecht, Netherlands, focused on computational approaches in virology, with topics including (but not limited to) virus discovery, diagnostics, (meta-)genomics, modeling, epidemiology, molecular structure, evolution, and viral ecology. The goals of the Second Annual Meeting were threefold: (i) to bring together virologists and bioinformaticians from across the academic, industrial, professional, and training sectors to share best practice; (ii) to provide a meaningful and interactive scientific environment to promote discussion and collaboration between students, postdoctoral fellows, and both new and established investigators; (iii) to inspire and suggest new research directions and questions. Approximately 120 researchers from around the world attended the Second Annual Meeting of the EVBC this year, including 15 renowned international speakers. This report presents an overview of new developments and novel research findings that emerged during the meeting. KW - Bioinformatics KW - Software KW - Virology KW - Viruses PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458814 DO - https://doi.org/10.3390/v10050256 SN - 1999-4915 VL - 10 IS - 5 SP - 256, 1 EP - 19 PB - MDPI AN - OPUS4-45881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - An, Biwen A1 - Shen, Y. A1 - Voordouw, J. A1 - Voordouw, G. ED - Dumas, C. T1 - Halophilic Methylotrophic Methanogens May Contribute to the High Ammonium Concentrations Found in Shale Oil and Shale Gas Reservoirs N2 - Flow-back and produced waters from shale gas and shale oil fields contain high ammonium, which can be formed by methanogenic degradation of methylamines into methane and ammonium. Methylamines are added to fracturing fluid to prevent clay swelling or can originate from metabolism of the osmolyte triglycinebetaine (GB). We analyzed field samples from a shale gas reservoir in the Duvernay Formation and from a shale oil reservoir in the Bakken formation in Canada to determine the origin of high ammonium. Fresh waters used to make fracturing fluid, early flow-back waters, and late flow back waters from the shale gas reservoir had increasing salinity of 0.01, 0.58, and 2.66 Meq of NaCl, respectively. Microbial community analyses reflected this fresh water to saline transition with halophilic taxa including Halomonas, Halanaerobium, and Methanohalophilus being increasingly present. Early and late flow-back waters had high ammonium concentrations of 32 and 15 mM, respectively. Such high concentrations had also been found in the Bakken produced waters. Enrichment cultures of Bakken produced waters in medium containing mono, di-, or trimethylamine, or triglycinebetaine (GB) converted these substrates into ammonium (up to 20 mM) and methane. The methylotrophic methanogen Methanohalophilus, which uses methylamines for its energy metabolism and uses GB as an osmolyte, was a dominant community member in these enrichments. Halanaerobium was also a dominant community member that metabolizes GB into trimethylamine, which is then metabolized further by Methanohalophilus. However, the micromolar concentrations of GB measured in shale reservoirs make them an unlikely source for the 1,000-fold higher ammonium concentrations in flow-back waters. This ammonium either originates directly from the reservoir or is formed from methylamines, which originate from the reservoir, or are added during the hydraulic fracturing process. These methylamines are then converted into ammonium and methane by halophilic methylotrophic methanogens, such as Methanohalophilus, present in flow-back waters. KW - Methanogen KW - Oil and gas industry KW - Shale KW - Halophile KW - Corrosion PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474982 UR - https://www.frontiersin.org/articles/10.3389/fenrg.2019.00023/full DO - https://doi.org/10.3389/fenrg.2019.00023 VL - 7 SP - Article 23, 1 EP - 13 PB - Frontiers Media CY - Frontiers in Energy Research AN - OPUS4-47498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavasolyzadeh, Zeynab A1 - Tang, Peng A1 - Hahn, Marc Benjamin A1 - Hweidi, Gada A1 - Nordholt, Niclas A1 - Haag, Rainer A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - 2D and 3D Micropatterning of Mussel‐Inspired Functional Materials by Direct Laser Writing N2 - AbstractThis work addresses the critical need for multifunctional materials and substrate‐independent high‐precision surface modification techniques that are essential for advancing microdevices and sensing elements. To overcome existing limitations, the versatility of mussel‐inspired materials (MIMs) is combined with state‐of‐the‐art multiphoton direct laser writing (DLW) microfabrication. In this way, 2D and 3D MIM microstructures of complex designs are demonstrated with sub‐micron to micron resolution and extensive post‐functionalization capabilities. This study includes polydopamine (PDA), mussel‐inspired linear, and dendritic polyglycerols (MI‐lPG and MI‐dPG), allowing their direct microstructure on the substrate of choice with the option to tailor the patterned topography and morphology in a controllable manner. The functionality potential of MIMs is demonstrated by successfully immobilizing and detecting single‐stranded DNA on MIM micropattern and nanoarray surfaces. In addition, easy modification of MIM microstructure with silver nanoparticles without the need of any reducing agent is shown. The methodology developed here enables the integration of MIMs in advanced applications where precise surface functionalization is essential. KW - Direct laser writing KW - Mussel-inspired materials KW - Polyglycerol KW - Polydopamine KW - Micropatterning PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588778 DO - https://doi.org/10.1002/smll.202309394 SN - 1613-6829 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-58877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braymer, Joseph J. A1 - Stehling, Oliver A1 - Stümpfig, Martin A1 - Rösser, Ralf A1 - Spantgar, Farah A1 - Blinn, Catharina M. A1 - Mühlenhoff, Ulrich A1 - Pierik, Antonio J. A1 - Lill, Roland T1 - Requirements for the biogenesis of [2Fe-2S] proteins in the human and yeast cytosol N2 - The biogenesis of iron–sulfur (Fe/S) proteins entails the synthesis and trafficking of Fe/S clusters, followed by their insertion into target apoproteins. In eukaryotes, the multiple steps of biogenesis are accomplished by complex protein machineries in both mitochondria and cytosol. The underlying biochemical pathways have been elucidated over the past decades, yet the mechanisms of cytosolic [2Fe-2S] protein assembly have remained ill-defined. Similarly, the precise site of glutathione (GSH) requirement in cytosolic and nuclear Fe/S protein biogenesis is unclear, as is the molecular role of the GSH-dependent cytosolic monothiol glutaredoxins (cGrxs). Here, we investigated these questions in human and yeast cells by various in vivo approaches. [2Fe-2S] cluster assembly of cytosolic target apoproteins required the mitochondrial ISC machinery, the mitochondrial transporter Atm1/ABCB7 and GSH, yet occurred independently of both the CIA system and cGrxs. This mechanism was strikingly different from the ISC-, Atm1/ABCB7-, GSH-, and CIA-dependent assembly of cytosolic–nuclear [4Fe-4S] proteins. One notable exception to this cytosolic [2Fe-2S] protein maturation pathway defined here was yeast Apd1 which used the CIA system via binding to the CIA targeting complex through its C-terminal tryptophan. cGrxs, although attributed as [2Fe-2S] cluster chaperones or trafficking proteins, were not essential in vivo for delivering [2Fe-2S] clusters to either CIA components or target apoproteins. Finally, the most critical GSH requirement was assigned to Atm1-dependent export, i.e. a step before GSH-dependent cGrxs function. Our findings extend the general model of eukaryotic Fe/S protein biogenesis by adding the molecular requirements for cytosolic [2Fe-2S] protein maturation. KW - Biokorrosion KW - Hydrogenasen KW - Microbially Induced Corrosion PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602328 DO - https://doi.org/10.1073/pnas.2400740121 SN - 0027-8424 VL - 121 IS - 21 SP - 1 EP - 12 PB - Proceedings of the National Academy of Sciences CY - Washington D.C. AN - OPUS4-60232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - He, Zhiming A1 - Dechesne, Arnaud A1 - Schreiber, Frank A1 - Zhu, Yong-Guan A1 - Larsson, Joakim A1 - Smets, Barth T1 - Understanding Stimulation of Conjugal Gene Transfer by Nonantibiotic Compounds: How Far Are We? N2 - A myriad of nonantibiotic compounds is released into the environment, some of which may contribute to the dissemination of antimicrobial resistance by stimulating conjugation. Here, we analyzed a collection of studies to (i) identify patterns of transfer stimulation across groups and concentrations of chemicals, (ii) evaluate the strength of evidence for the proposed mechanisms behind conjugal stimulation, and (iii) examine the plausibility of alternative mechanisms. We show that stimulatory nonantibiotic compounds act at concentrations from 1/1000 to 1/10 of the minimal inhibitory concentration for the donor strain but that stimulation is always modest (less than 8-fold). The main proposed mechanisms for stimulation via the reactive oxygen species/SOS cascade and/or an increase in cell membrane permeability are not unequivocally supported by the literature. However, we identify the reactive oxygen species/SOS cascade as the most likely mechanism. This remains to be confirmed by firm molecular evidence. Such evidence and more standardized and high-throughput conjugation assays are needed to create technologies and solutions to limit the stimulation of conjugal gene transfer and contribute to mitigating global antibiotic resistance. KW - Antibiotic resistance KW - Horizontal gene transfer KW - Conjugation KW - Chemicals PY - 2024 DO - https://doi.org/10.1021/acs.est.3c06060 SP - 1 EP - 14 PB - ACS Publications AN - OPUS4-60105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pietsch, Franziska A1 - O'Neill, A. J. A1 - Ivask, A. A1 - Jenssen, H. A1 - Inkinen, J. A1 - Kahru, A. A1 - Ahonen, M. A1 - Schreiber, Frank T1 - Selection of resistance by antimicrobial coatings in the healthcare setting N2 - Antimicrobial touch surfaces have been introduced in healthcare settings with the aim of supporting existing hygiene procedures, and to help combat the increasing threat of antimicrobial resistance. However, concerns have been raised over the potential selection pressure exerted by such surfaces, which may drive the evolution and spread of antimicrobial resistance. This review highlights studies that indicate risks associated with resistance on antimicrobial surfaces by different processes, including evolution by de-novo mutation and horizontal gene transfer, and species sorting of inherently resistant bacteria dispersed on to antimicrobial surfaces. The review focuses on antimicrobial surfaces made of copper, silver and antimicrobial peptides because of the practical application of copper and silver, and the promising characteristics of antimicrobial peptides. The available data point to a potential for resistance selection and a subsequent increase in resistant strains via cross-resistance and co-resistance conferred by metal and antibiotic resistance traits. However, translational studies describing the development of resistance to antimicrobial touch surfaces in healthcare-related environments are rare, and will be needed to assess whether and how antimicrobial surfaces lead to resistance selection in These settings. Such studies will need to consider numerous variables, including the antimicrobial concentrations present in coatings, the occurrence of biofilms on surfaces, and the humidity relevant to dry-surface environments. On-site tests on the efficacy of antimicrobial Coatings should routinely evaluate the risk of selection associated with their use. KW - Antimicrobial resistance KW - Antimicrobial coating KW - Touch surfaces KW - Healthcare KW - Infections KW - COST action CA15114 AMICI PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510926 DO - https://doi.org/10.1016/j.jhin.2020.06.006 SN - 0195-6701 VL - 106 IS - 1 SP - 115 EP - 125 PB - Elsevier Ltd AN - OPUS4-51092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -