TY - JOUR A1 - Bodechtel, S. A1 - Fuhrmann, A. A1 - Henning, A. A1 - Hahn, Oliver A1 - Rabin, Ira A1 - Kreische, W. A1 - Mäder, M. T1 - The Madonna with the Wash-Basin by Giulio Romano: A Multidisciplinary Study of the Painting’s History N2 - In an interdisciplinary collaboration, restorers, art historians, and scientists examined Guilio Romano’s The Madonna with the Wash-Basin of 1525 (Dresden State Art Collections). Insights into the painting technique along with art historical comparisons provided the opportunity for a better understanding of the painting’s genesis, in particular concerning an early reworking of the background by the artist. A recovery and reconstruction of the earlier version of the background is now possible. The discovery of zinc in distinct passages of the painting, as well as the grey-black pigment stibnite and glass particles used as a supplement in paint layers are of special interest. The technological investigation initiated a discussion about the circumstances of the revision, as well as the painting’s relation to Vasari’s Lives of Artists. KW - Giulio Romano KW - Holy Family KW - Basin KW - Reworking KW - Pentimenti KW - Portrayal of St Joseph KW - Sixteenth-century painting technique KW - Raphael school KW - Zinc KW - Antimony black (stibnite) KW - Vasari PY - 2022 U6 - https://doi.org/10.1080/00393630.2022.2118302 VL - 2022 SP - 2 EP - 12 PB - Routledge Taylor & Francis Group CY - London, UK AN - OPUS4-55970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steger, Simon A1 - Stege, H. A1 - Bretz, S. A1 - Hahn, Oliver ED - Tomasin, P. T1 - Disclosing glittering and sparkling effects in 20th-century reverse glass paintings: a study of metallic pigments and metal foils by means of in situ XRF and DRIFTS analysis N2 - This work presents a spectroscopic study of metallic pigments and metal foils used in reverse glass paintings that were created between 1912 and 1954. Metallic pigments induce a notable sparkling effect by means of the lateral incidence of light, whereas metal foils enhance the gloss and create a glittering effect when the painting is viewed in reflected light. Both effects were desired features especially in modern reverse paintings on glass and applied by artists in manifold creative manner. The paper gives an overview on the composition of the metalfoils and metal pigments in 14 works as determined in situ by X-ray spectrometry. Metal foils made of tin, brass, aluminium and silver were found in nine paintings. Gold imitating Cu-Zn pigments in different hues and with various Cu/Zn net intensity ratios were recorded for six paintings. Silvery pigments were identified mainly as Al pigments, but also as Cu-Zn-Ni alloy in one case. Other uncommon metallic pigments were detected in Arlequin vindicatif (c. 1925) by Floris Jespers, who used not only Cu-Zn and Al pigments, but also brownish Cu and Cu-Zn-Sn pigments. Non-invasive diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) was used to classify the binding media of the metallic pigments. Drying oil and natural resin probably mixed with oil were the most common binding media. A polysaccharide-based binder was found in the silvery Cu-Zn-Ni pigment of Ohne Titel (1954) by Marianne Uhlenhuth. KW - Archaeometry KW - Non-invasive analysis KW - Reverse paintings on glass PY - 2020 U6 - https://doi.org/10.1016/j.culher.2020.11.008 SN - 1296-2074 VL - 48 SP - 196 EP - 204 PB - Elsevier Masson SAS CY - Amsterdam AN - OPUS4-54428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gruskovà, J. A1 - Martin, G. A1 - Kresten, O. A1 - Mitthoff, F. A1 - Kaska, K. A1 - Hofmann, C. A1 - Kreuzer, W. A1 - Phelps, M. A1 - Boydston, K. A1 - Easton Jr., R. L. A1 - Knox, K. T. A1 - Kelbe, D. A1 - Kasotakis, D. A1 - Christens-Barry, W. A. A1 - Stewart, D. A1 - Rabin, Ira A1 - Hahn, Oliver A1 - Glaser, L. A1 - Garrevoet, J. A1 - Shevchuk, I. A1 - Klumpp, S. A1 - Deckers, D. A1 - Buck, J. ED - Cronier, M. ED - Mondrain, B. T1 - Insights-into-the-Digital-Recovery-of-the-Scythica-Vindobonesia N2 - The Scythica Vindobonensia, the new fragments on Gothic incursions into Roman provinces in the Balkans in the middle of the third century AD that were revealed some years ago in a Greek palimpsest at the Austrian National Library in Vienna (ÖNB), are commonly considered as one of the most important additions of the last decades to the corpus of texts from classical Antiquity. Tere is a high degree of confdence among scholars in supposing that the fragments come from the lost work Scythica written in Greek by the third-century historian P. Herennius Dexippus (Δέξιππος) of Athens. The new fragments have hence also been called Dexippus Vindobonensis. In his Scythica, Dexippus recorded wars of the Romans with the Goths (and other tribes) whom he called Scythians. The work had been hitherto known only from excerpts and quotes by later authors. Eight pages of a Byzantine manuscript copy of the ancient text have survived hidden underneath the visible surface of the last four parchment folios of the Vienna manuscript Historicus graecus 73, f. 192r -195v4. The copy is written in a Greek calligraphic minuscule which has been estimated by palaeographers to be of the middle or the second half of the eleventh century. In the thirteenth century, the text (on each of the eight pages arranged in one column, with 30 lines per page) was washed of the parchment and the valuable material made from animal skin was re-used for Christian texts. The new writing largely covered the faded remnants of the original text. It thus became hidden from the human eye for more than seven hundred years. Its discovery by Jana Grusková, a classical philologist specialized in the transmission of Greek texts, resulted from a systematic review of all Greek palimpsests kept at the Austrian National Library in Vienna at the beginning of the twenty-first century and a detailed examination of the four folios in 2007-20097. KW - Scythica Vindobonensia, KW - Gothic incursions KW - A Greek palimpsest KW - Antiquity KW - Byzantine manuscript KW - Vienna manuscript PY - 2020 SN - 978-2-916716-81-7 SN - 0577-1471 VL - 2020 IS - 24/1 SP - 945 EP - 967 PB - Association des Amis du Centre d’Histoire et Civilisation de Byzance CY - Paris ET - 1 AN - OPUS4-53843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Hahn, Oliver A1 - Nehring, G. A1 - Freisitzer, R. A1 - Rabin, Ira T1 - A study on early european inks from St. Paul in lavanttal N2 - Typology of Inks Archives and museums around the world contain a vast number of manuscripts that were written in different inks: carbon inks, plant inks, iron-gall inks and mixed inks. Yet most archaeometric studies of manuscripts focus on the palette of pigments found in illuminated manuscripts whereas identification of the inks is still largely based on cultural-historical studies and visual inspections. One of the reasons of this disproportion in the studies can be explained by the properties of Raman spectroscopy, the technique of choice for identification of pigments. In contrast, this technique is only partially viable when dealing with organic colourants. Brown and Clark discuss these difficulties and the uncertainties of identification of iron-gall inks by Raman spectroscopy in their pioneering work on early medieval Anglo-Saxon manuscripts (K. Brown and R. Clark 2004). To facilitate instrumental analysis of inks, we have developed a protocol that starts with the identification of the inks type (Rabin et al. 2012) which doesn’t require complicated instrumentation and can be carried out by paleographers and codicologists. Three typological ink classes The black writing materials used in manuscript production in Antiquity und Middle Ages can be sorted in three typologically different ink classes: soot, plant and iron-gall. Soot ink is a fine dispersion of carbon pigments in a water soluble binding agent; plant-based ink consists of a solution of the tannins extracted from gallnuts or tree bark; iron-gall ink, is produced by mixing a soluble compound of iron (II) with gallic or tannic acid extracted from gallnuts or tree bark. Therefore, iron-gall ink presents a boundary case between solution and dispersion ink, in which a water-soluble preliminary stage oxidizes and evolves into a black, insoluble precipitate similar to the carbon pigments when the writing is exposed to air (Krekel 1999). The additional category of mixed inks, i.e. inks produced by addition of various metals to the soot inks or intentional mixing of iron-gall and soot - based inks started attracting scholarly attention only recently because their significance was established only a short while ago (Brun et al. 2016, Colini 2018, Nehring et al. 2021). We suggest that plant and mixed inks build a bridge from the carbon ink of Antiquity to the properly formulated iron-gall ink that became a standard black ink from the late Middle Ages to the 19th century when it gave way to modern inks. KW - Early european inks KW - Typology of Inks KW - Raman spectroscopy KW - Illuminated manuscripts KW - Archaeometric studies KW - Dispersion of carbon pigments PY - 2021 VL - 2021 SP - 56 EP - 75 PB - Gazette du livre médiéval CY - Paris AN - OPUS4-53844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ketelsen, T. A1 - Wintermann, Carsten A1 - Melzer, C. A1 - Dietz, Georg A1 - Golle, U. A1 - Hahn, Oliver ED - Cole, M. ED - Dogramaci, B. ED - Lehmann, A.-S. ED - Sölch, B. ED - Wedekind, G. T1 - Connoisseurship and the Investigation of Materiality: Four “Rembrandt” Drawings in Weimar N2 - The aim of this paper is to present the productive interplay of connoisseurship and material analysis when dealing with drawings by Rembrandt – or previously attributed to him – in the collection of the Klassik Stiftung Weimar. This concerns the more precise determination of the drawing materials used and the reconstruction of the genesis of the drawings discussed. The material analysis allows us to decide whether and how Rembrandt’s inks can be used to determine authorship at all. The “material turn” in drawing studies thus intervenes in the discussion about authorship and opens up a broader production aesthetic perspective. No longer the “style” but rather the handeling becomes the decisive criterion for answering the question “Rembrandt, or not?” KW - Archaeometry KW - History of Art KW - Drawings KW - Rembrandt PY - 2021 SN - 0044-2992 VL - 84 IS - 4 SP - 483 EP - 518 PB - Deutscher Kunstverlag CY - Berlin/München AN - OPUS4-54342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Colini, Claudia A1 - Shevchuk, I. A1 - Huskin, K. A. A1 - Rabin, Ira A1 - Hahn, Oliver ED - Quenzer, J. B. T1 - A New Standard Protocol for Identification of Writing Media N2 - Our standard protocol for the characterisation of writing materials within advanced manuscript studies has been successfully used to investigate manuscripts written with a pure ink on a homogeneous writing surface. However, this protocol is inadequate for analysing documents penned in mixed inks. We present here the advantages and limitations of the improved version of the protocol, which now includes imaging further into the infrared region (1100−1700 nm). KW - Archaeometry KW - Manuscripts KW - Non-destructive testing PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543454 SN - 978-3-11-074545-0 VL - 25 SP - 161 EP - 182 PB - Walter de Gruyter GmbH CY - Berlin/Boston AN - OPUS4-54345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Hahn, Oliver A1 - Golle, U. A1 - Wintermann, Carsten A1 - Laurenza, D. ED - Quenzer, J. B. T1 - Scientific Analysis of Leonardo’s Manuscript with Anatomic Drawings and Notes N2 - In this paper, we discuss the importance of scientifically investigating cultural artefacts in a non-invasive way. Taking as test case Leonardo da Vinci’s Manuscript with anatomic drawings and notes, which is stored in Weimar, we clarify fundamental steps in the chronology of this folio. By means of microscopy, infrared reflectography, UV photography, and X-ray fluorescence analysis, we were able to identify various types of sketching material and several varieties of iron gall ink. For his sketches, Leonardo used two different sketching tools, a lead pencil and a graphite pencil, as well as several types of ink for developing these sketches into drawings. With regard to ink, it is important to observe that there is no difference between the ink Leonardo used for drawing and the ink he used for writing text. Based on the materials analysed, we suggest a chronology for the creation of this unique folio. KW - Archaeometry KW - Non-invasive analysis KW - Drawings KW - Leonardo da Vinci PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543460 SN - 978-3-11-074545-0 VL - 25 SP - 213 EP - 228 PB - Walter de Gruyter GmbH CY - Berlin/Boston AN - OPUS4-54346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maltomini, F. A1 - Ghigo, T. A1 - Hahn, Oliver A1 - Rabin, Ira ED - Fournet, J.-L. ED - Kramer, B. ED - Luppe, W. ED - Maehler, H. ED - McGing, B. ED - Poethke, G. ED - Reiter, F. ED - Richter, S. T1 - Florentine papyri under examination: The material study of the inks used at the beginning of the Common Era in the "Family of Kôm Kâssûm" Archive (Hermopolis) N2 - Carbon inks with metallic admixtures are found on some papyri of the 2nd century CE from a family archive in Hermopolis. The great diversity of inks found in a single household within a short period of time suggests that inks were purchased rather than self-made. KW - Carbon ink KW - Iron-gall ink KW - Mixed ink KW - XRF ink analysis KW - Family archives KW - Hermopolis PY - 2021 U6 - https://doi.org/10.1515/apf-2021-0010 SN - 0066-6459 SN - 1867-1551 VL - 67 IS - 1 SP - 146 EP - 165 PB - De Gruyter CY - Berlin AN - OPUS4-53160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steger, Simon A1 - Stege, H. A1 - Bretz, S. A1 - Hahn, Oliver T1 - Capabilities and limitations of handheld Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for the analysis of colourants and binders in 20th-century reverse paintings on glass N2 - A non-invasivemethod has been carried out to show the capabilities and limitations of Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for identifying of colourants and binders in modern reverse glass paintings. For this purpose, the reverse glass paintings “Zwei Frauen am Tisch” (1920–22), “Bäume” (1946) (both by Heinrich Campendonk), “Lofoten” (1933) (Edith Campendonk-van Leckwyck) and “Ohne Titel” (1954) (Marianne Uhlenhuth), were measured. In contrast to other techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession. In multi-layered paint systems, the front paint layer may no longer be accessible. The work points out the different spectral appearance of a given substance (gypsum, basic lead white) in reverse glass paintings. However, inverted bands, band overlapping and derivative-shaped spectral features can be interpreted by comparing the spectra fromthe paintingswith spectra frompure powders and pigment/linseed oil mock-ups. Moreover, the work focuses on this method's capabilities in identifying synthetic organic pigments (SOP). Reference spectra of three common SOP (PG7, PY1, PR83) were obtained from powders and historical colour charts.We identified PR83 and PY1 in two reverse glass paintings, using the measured reference spectra. The recorded DRIFTS spectra of pure linseed oil, gum Arabic, mastic, polyvinyl acetate resin and bees wax can be used to classify the binding media of the measured paintings. KW - DRIFTS KW - Painting KW - Non-invasive KW - Pigment PY - 2018 U6 - https://doi.org/10.1016/j.saa.2018.01.057 SN - 1873-3557 VL - 195 SP - 103 EP - 112 PB - Elsevier B.V. AN - OPUS4-44023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bosch, S. A1 - Colini, C. A1 - Hahn, Oliver A1 - Janke, A. A1 - Shevchuk, I. ED - Friedrich, M. ED - Quenzer, J. ED - Wandrey, I. T1 - The Atri fragment revisited I: Multispectral imaging and ink identification N2 - This paper reports the outcome of an interdisciplinary team’s application of multispectral imaging techniques and material analysis to a music fragment from the first decades of the fifteenth century: Atri, Archivio Capitolare, Museo della Basilica Cattedrale, Biblioteca del Capitolo della Cattedrale, Frammento 17. This important parchment leaf has rarely been investigated since its discovery 45 years ago. Thanks to the applied techniques and methods (such as the evaluation of the data using the fingerprint model), it is now possible to discuss new evidence supporting conclusions regarding the fragment’s origin and afterlife. KW - Archaeometry KW - Cultural heritage KW - Non-destructiv testing PY - 2018 SN - 1867-9617 VL - 2018 IS - 11 SP - 141 EP - 156 PB - Universität Hamburg CY - Hamburg AN - OPUS4-45741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -