TY - CONF A1 - Steger, Simon A1 - Stege, H A1 - Bretz, S. A1 - Hahn, Oliver T1 - A complementary spectroscopic approach for the non invasive in situ identification of synthetic organic pigments in modern reverse paintings on glass N2 - This work addresses the identification of synthetic organic pigments (SOP) in ten modern reverse paintings on glass (1912-1946) by means of an in-situ multi-analytical approach. The combination of the complimentary properties of mobile Raman spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) enabled the detection of sixteen SOP even in complex mixtures with inorganic compounds and binders. For the β-naphthol pigments, both Raman and DRIFTS yield appropriate results. DRIFTS was the preferred method for the detection of synthetic alizarin (PR83). Its diagnostic band pattern even allows its detection in complex mixtures with mineral pigments, binders and fillers. Raman spectroscopy yielded distinctive spectra for the triaryl carbonium pigments (PG1, PV2, PR81) and the two-yellow azo SOP (PY3, PY12), whereas DRIFT spectra were affected by extensive band overlapping. This may also occur in Raman spectra, but in less problematic amounts. Fluorescence is the major problem with Raman and it significantly hampers the SOP spectra even with the 785 nm laser. On the one hand the big spot size of DRIFTS (10 mm) limits the technique to rather large sampling areas, whereas the use of a 50× objective for in-situ Raman measurements permits a focus on small spots and aggregated SOP flakes. Moreover, “environmental” factors like temperature changes, artificial light, limited space and vibrations when people pass by need to be considered for in-situ measurements in museums. Finally, the results show the experimental use of SOP in modern reverse glass paintings. Among several rare SOP (e.g. PB52, PR81), two of them (PG1, PV2) have never been reported before in any artwork. T2 - Technart2019 CY - Bruges, Belgium DA - 07.05.2019 KW - Synthetic organic pigments KW - Reverse glass painting KW - DRIFTS KW - Raman spectroscopy PY - 2019 AN - OPUS4-48009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Oesterle, D. A1 - Mayer, R. A1 - Hahn, Oliver A1 - Bretz, S. A1 - Geiger, G. T1 - First insights into Chinese reverse glass paintings gained by non invasive spectroscopic analysis N2 - A non-invasive methodological approach (X-ray fluorescence (XRF), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Raman spectroscopy) has been carried out to identify the pigments and classify the binding media in two Chinese reverse glass paintings (The Archer, Yingying and Hongniang) from the late 19th and early 20th centuries. The results reveal a combined use of traditional Chinese and imported European materials. Several pigments like cinnabar, lead white, orpiment, carbon black and copper-arsenic green (probably emerald green) were found in both paintings; red lead, artificial ultramarine blue, Prussian blue and ochre appear in at least one of the paintings. The presence of portlandite (Ca(OH)2) along calcite (CaCO3) in the fine-grained, white backing layer of Yingying and Hongniang indicates the presence of limewash. In Chinese tradition, limewash was produced from clamshells, and was then sold as clamshell white. In contrast to the Japanese pigment, Chinese clamshell white was made of finely grounded shells, which were heated over a low fire. The residue (CaO) forms portlandite (Ca(OH)2) when water is continuously added. This water-rich mixture is applied on the painting. Portlandite reacts with atmospheric CO2 during drying and forms fine-grained calcite (CaCO3) [1,2]. The identification of emerald green (The Archer) suggests an earliest manufacturing date in the 1830s [3] and promotes the sinological dating of the painting. Drying oil was classified as a binding media in most areas of both paintings. However, the orange background of The Archer yielded prominent bands of both proteinaceous and fatty binder. T2 - Technart2019 CY - Bruges, Belgium DA - 07.05.2019 KW - Reverse glass painting KW - Raman spectroscopy KW - Non-invasive analysis PY - 2019 AN - OPUS4-48010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Seneschal-Merz, Karine A1 - Feldmann, Ines A1 - Bücker, Michael A1 - Oleszczuk, S. T1 - EDX-Analysis on medieval glasses and innovative protection of stained glass panels N2 - The church of Koszewko (Poland) is a brick building edified in the 15th century built on cobblestone foundations. There are five windows in the sanctuary. Three of them enclose heraldic panels from the Küssow’s family from the 15th century which are surrounded with Goethe glass from the 18th century to complete the windows. The colored heraldic panels are strongly damaged and corroded with massive paint layer losses, glass- and leadbreakages. Those medieval glass fragments have been shortly discovered and are of particular interest for Poland since only few medieval glazing have been conserved. The damages as well as the glass compositions have been investigated with ESEM/EDX. Two categories of medieval glass compositions have been identified. The blue glass is particularly sensible to corrosion because of his high content in K2O. The colorless and the red glass samples belong to a stable glass type. Due to the thickness of the gel layer, it is easy to see that the degradation is strongly proceeded. The protection of those medieval stained-glass panels is absolute necessary. The medieval panels have been restored and surrounded from a copper frame. Then they have been fixed on the wood frame in the church. The exterior glazing has been closed with a panel of Goethe glass. The gap between the Goethe- and the medieval glass is about 3 cm. The Goethe glass panel has been stabilized with a film based on polyester to protect the medieval glasses against any damages. In this way, a low cost protective glazing has been installed for a long-term conservation of each medieval stained-glass panels. The climate measurements over the period of one year on the restored windows are in process. The temperature and the relative humidity are recorded in the church interior, in the gap between the original and the Goethe glass and outdoors. T2 - 93rd Annual Meeting of DGG and Annual Meeting of USTV CY - Nuremberg, Germany DA - 13.05.2019 KW - Medieval glasses KW - Stained glasses KW - EDX Analysis KW - Corrosion PY - 2019 AN - OPUS4-48025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Questions: Biocides are in contact with soils through direct application and passive leaching from protected materials. Consequently, soil microorganisms are exposed to toxic biocides even though they are not their primary targets. Soil is a large reservoir of microbial diversity and has been hypothesized to be a crucial factor for the evolution and spread of antimicrobial resistance. Currently, there is little knowledge on how biocides used to protect materials affect the evolution and spread of resistance. Thus, our aim is to investigate the risk for the evolution of biocide resistance and cross-resistance to antibiotics. In addition, we aim to elucidate the affect of biocides on the spread of resistance via horizontal gene transfer (HGT). Methods: In laboratory evolution experiments we culture selected model soil microorganism with representative biocides followed by antibiotic cross-resistance determination and genome sequencing. Moreover, we investigate if the selected biocides affect the HGT frequency of plasmids that carry resistance genes among soil microorganism and the consequences for survival of the affected populations. Results: Our initial results show only small increases of biocide resistance during serial transfers in the presence of biocides. One reason for this might be the narrow selective window for biocide resistance due to steep dose-response relationships. Furthermore, we will present results from ongoing experiments on the effects of material preservatives on HGT frequencies facilitating microbial community adaptation to stress. Conclusions: The results will enable future risk assessment regarding resistance evolution for biocides used as material preservatives. T2 - 5th International Symposium on the Environmental Dimension of Antibiotic Resistance (EDAR) CY - Hong Kong, China DA - 09.06.2019 KW - Biocides KW - Horizontal gene transfer HGT KW - Microbiology KW - Resistance evolution KW - Antimicrobial resistance PY - 2019 AN - OPUS4-49401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weimann, Karin A1 - Adam, Christian T1 - Gypsum plasterboard recycling - a sustainable approach N2 - Gypsum (calcium sulfate dihydrate) has excellent building material properties and has been widely used in constructions in the last decades in many countries. Accordingly, an increase of waste gypsum in C&D waste is expected in the upcoming years. On one hand, sulfates are unwanted in other secondary building materials (particularly in recycled concrete aggregates) and should be minimized for quality reasons. On the other hand, used gypsum from CDW can also be used in gypsum production if the high quality requirements for the recycled gypsum – especially regarding the sorting accuracy - are met. A large percentage of the gypsum from buildings was installed as gypsum plasterboards in interior fittings so far. Gypsum plasterboards are comparatively simple to remove and to separate during selective dismantling. Therefore, a high sorting purity can be achieved. In addition, techniques for the recycling of gypsum plasterboards already exist and high quality standards can be achieved. Also, the reuse in gypsum production has been improved in the last decade. Furthermore, an environmental evaluation of the whole process of gypsum plasterboard recycling and reuse showed that this approach can be environmentally advantageous. Therefore, a closed-loop recycling of gypsum plasterboards is feasible. This poster will show the development of gypsum consumption in different countries as well as a prognosis for the upcoming of gypsum in CDW in the future decades in Germany. Furthermore, a simplified scheme of the recycling process and selected results from an environmental evaluation will be presented. T2 - Conference on Mining the European Anthroposphere: Poster session CY - Bologna, Italy DA - 20.02.2020 KW - LCA KW - Gypsum recycling PY - 2020 AN - OPUS4-51435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raedel, Martina A1 - Bücker, Michael A1 - Feldmann, Ines A1 - Reimann, M. T1 - Conservation of damaged architectural aluminum elements N2 - Aluminum is an often-used building material in modern architecture. In recent years buildings from the 1950th and 1960th are increasingly subject of conservation works including the aluminum parts. Typical surface damages are signs of corrosion caused by weathering processes or scratches in the anodized layer due to extensive wear. To repair damaged aluminum surfaces, there are usually two options: smaller areas are repaired by using a touch-up pen, for larger damages it is necessary to remove the anodized layer completely. Both possibilities are disadvantageous for the objects; the touch-up pen often does not match the color together with an insufficient corrosion protection, while newly anodized layers often differ in color and gloss from the original surface. For this reason, a research project was initiated to develop a mobile method to repair anodized aluminum parts. The first step focusses on the mobile anodization process by using the electrolyte with a gel substrate. Different cathodic materials are to be tested together with appropriate cooling material. The anodized area should be isolated to protect undamaged areas. Examinations of the produced layers are conducted by using Keyence microscope, eddy current testing and ESEM analysis. Further steps are to transform the coloring and sealing process for mobile application. Color could be applied by using a brush or by spray while the sealing process could be performed with water vapor. An heatable putty knife could be used, if heating up the area will be necessary. Once the application process is developed, the anodization will be tested on samples with artificial damages, fixed in horizontal and vertical positions. The stability of the anodized surface will be examined by accelerated ageing in a climate chamber and outdoor weathering. The electrolyte (diluted sulfuric acid) was combined with a gel binder to enable a mobile application. Several thickening agents were tested concerning their conductivity and stability in acid systems. Anodization tests with different cathodic material and shapes were conducted. The temperature during anodization was controlled and adjusted if necessary. The anodized area was restricted by using either a lacquer, an adhesive or a removable silicon barrier. The fist results show the feasibility of the method on enclosed areas. The achieved thickness was measured by eddy current testing and the structure was controlled by ESEM analysis. The examinations show a connection between thickness and porosity of the anodized layers and the temperature during the application process. Next steps are testing mobile coloring and sealing methods followed by mobile anodization on artificial damaged areas. T2 - Metal 2019 CY - Neuchâtel, Switzerland DA - 02.09.2019 KW - Mobile anodisation KW - Aluminium KW - Conservation KW - Damage repair PY - 2020 UR - https://www.lulu.com/shop/claudia-chemello-and-laura-brambilla-and-edith-joseph/metal-2019-proceedings-of-the-interim-meeting-of-the-icom-cc-metals-working-group-september-2-6-2019-neuch%C3%A2tel-switzerland-ebook/ebook/product-24517161.html AN - OPUS4-51479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Meng, Birgit A1 - Stephan, D. A1 - Adam, Christian T1 - Formation of tricalciumsilicate from post-treated metallurgical slags N2 - LD-slags differ from Ordinary Portland Cement (OPC) mainly in a higher content of iron oxides and a low content of Tricalciumsilicate (Alite). In the context of an improved resource usage, a procedure to convert LDslags into cement clinker was investigated. T2 - 15th International Congress on the Chemistry of Cement CY - Prague, Czech Republic DA - 16.09.2019 KW - Tricalcium-silicate KW - Portland Cement KW - Alite KW - Steelmaking slag PY - 2019 AN - OPUS4-49591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A1 - Knabe, Nicole A1 - Voigt, Oliver A1 - Heeger, Felix A1 - Schumacher, Julia T1 - A Genetic Toolbox for Exploring the Life Style of the Rock-inhabiting Black Fungus Knufia petricola N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish sub-aerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. The exact genetic properties that ensure their survival in extreme environments can be studied if some black fungi were amenable to genetic manipulations. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that grows moderately in axenic culture and exhibits all the characteristics of black yeasts such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis. For this environmental strain we developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis and expressing fluorescent reporter genes. Hence, endogenous and foreign genes can be expressed from episomal AMA1-containing plasmids and genome-integrated DNA constructs. Moderate rates of homologous recombination allow for both ectopic and targeted integrations. CRISPR-Cas9 was further validated as a strategy for obtaining selection marker-free mutants and silencing via RNA interference as an approach to study essential genes. Availability of this genetic toolbox and an annotated genome sequence is paving the way for studying interactions of K. petricola and other black yeasts with environmental stressors, material surfaces, soil matrices and phototrophic symbionts. T2 - VAAM symposium 'Molecular Biology of Fungi' CY - Göttingen, Germany DA - 19.09.2019 KW - Knufia petricola KW - Rock-inhabiting fungus KW - Genetics KW - Crispr-Cas9 PY - 2019 AN - OPUS4-49634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abdallah, Khaled A1 - Knabe, Nicole A1 - Breitenbach, Romy A1 - Dementyeva, Polina A1 - Voigt, Oliver A1 - Gerrits, Ruben A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - Developing a genetic toolbox for Knufia petricola A95: a model for stress-tolerant and symbiose-competent rock-inhabiting fungi N2 - Black microcolonial fungi (MCF) are persistent inhabitants of rock surfaces in hostile desert environments. In these niches, MCF have evolved mineral-weathering and symbiotic capabilities as well as mechanisms to cope with multiple stresses such as solar irradiation, temperature extremes and low water activity. Due to their stress tolerance these ascomycetes are prominent in modern terrestrial ecosystems – like man-made material surfaces from roof to solar panels. MCF interactive capabilities support their facultative symbiotic relationships with cyanobacteria and ensure their rock-weathering geochemical activity. Using the rock-inhabiting fungus K. petricola A95 (Chaetothyriales), we developed transformation protocols and deleted genes responsible for production of the protective pigments melanins and carotenoids. To confirm that the mutant phenotypes were not due to hidden mutations, melanin synthesis was restored by complementing the mutants with the respective wild type genes. Strains of K. petricola carrying gene variants for fluorescent proteins EGFP and DsRed are available. We successfully labelled the cytoplasm, nuclei, peroxisomes and mitochondria. Targeted and ectopic integrations result in stable transformants suitable for further phenotypical characterization. As K. petricola is a non-pathogenic fungus with all characteristic features of MCF, including meristematic growth, melanized cell-walls, extracellular polymeric substances and extensive pigment production, our results will shed light on protective role of pigments during cell wall maturation and oxidative stress defence in rock-inhabiting MCF. Genes involved in environmental sensing or substrate and phototroph interactions are currently targeted. With the help of a mutant collection and fluorescently labelled K. petricola we will be able to investigate interactions of MCF with environmental stressors, mineral substrates, soil matrices and phototrophic symbionts. T2 - Fungal Genetics Conference 2019 CY - Asilomar, CA, USA DA - 12.03.2019 KW - Knufia petricola KW - Genetics KW - Melanin PY - 2019 AN - OPUS4-49635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Heeger, Felix A1 - Whitfield, Daniel A1 - Knabe, Nicole A1 - Nai, Corrado A1 - Schumacher, Julia A1 - Broughton, William A1 - Cuomo, C. A1 - de Souza, E. A1 - Lespinet, O. A1 - Mazzoni, C. A1 - Monaghan, M. A1 - Gorbushina, Anna T1 - Exploring the genome of the black yeast Knufia petricola N2 - Black yeasts form a polyphyletic group of Ascomycota that colonize bare surfaces like rocks, facades of buildings, and solar panels. Their protective adaptations enable an adequate response to fluctuating and diverse temperature, water and UV radiation stresses. Together with bacteria and algae they form sub-aerial biofilms (SAB) this way discoloring and weathering the surfaces they grow on. Strain A95 of Knufia petricola (Eurotiomycetes, Chaetothyriales) displays both typical yeast-like cell growth and constitutive dihydroxynaphthalene (DHN) melanogenesis. Along with the cyanobacterium Nostoc punctiforme as photobiont, it is already used in a model system for studying SAB formation and bio-weathering. Applying the recently developed tools for the generation of deletion mutants will allow to define gene functions and to identify genes critical for abiotic and biotic interactions. We present a chromosome-level genome assembly and annotation for K. petricola A95. The genome was assembled with MaSuRCA using a hybrid assembly approach of Illumina MiSeq and PacBio SMRT sequencing data. The resulting assembly consists of 17 contigs including the complete mitochondrial genome and five complete chromosomes. It shows indication of repeat-induced point mutations (RIP). Supported by RNA sequencing data from eight different growth conditions, 10,994 genes were predicted with the BRAKER2 pipeline. Functional annotation of genes was obtained from general functional annotation databases and the fungal specific database FungiPath. Comparative analyses are in progress to identify genes specific to black yeasts, that may facilitate the survival on exposed surfaces. In sum, the genome sequence of K. petricola is a valuable resource to gain insight into the protein inventory and functional pathways of extremotolerant and symbiosis-capable fungi. T2 - Fungal Genetics Conference 2019 CY - Asilomar, CA, USA DA - 12.03.2019 KW - Knufia petricola KW - Black fungus KW - Genome sequence PY - 2019 AN - OPUS4-49636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -