TY - CONF A1 - Dinter, Adelina-Elisa A1 - An-Stepec, Biwen A1 - Wurzler, Nina A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Deciphering corrosion processes of MIC organisms - single cell-ICP-ToF-MS analysis of archaea on solid steels N2 - ICP-ToF (time of flight) MS enables the analysis of the multi-element fingerprint of single cells. The single cell ICP-ToF-MS is used in the presented poster for the analysis of archaea involved in microbiologically influenced corrosion (MIC) of steel. By means of sc-ICP-ToF-MS, the possible uptake of individual elements from the respective steel is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts. The work combines modern methods of analytical sciences with materials. T2 - SALSA - Make & Measure 2021 CY - Online meeting DA - 16.09.2021 KW - Sc-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea KW - Poster presentation PY - 2021 AN - OPUS4-53337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Even, Morgane A1 - Hutzler, C. A1 - Wilke, Olaf A1 - Vieth, B. A1 - Luch, A. T1 - Investigations on emission properties of VOCs from consumer products made of polymers N2 - There is a need for an assessment of the emission properties of volatile organic compounds (VOCs) from consumer products. A method comparison was carried out to evaluate adapted and cost-effective procedures for such items. Smaller and automated emission chambers de-picted similar kinetics compared to a 203 L standard chamber. Toy samples made of PVC (Polyvinyl chloride) emitted more VOCs compared to other tested polymeric products. The emissions from 2 selected samples were studied to allow an evaluation of the resulting room concentration and external exposure of a child. Obtained concentrations were not of concern. T2 - Conference on Indoor Air 2018 CY - Philadelphia, USA DA - 22.07.2018 KW - Emission chamber testing KW - Volatile organic compounds KW - Consumer articles PY - 2018 AN - OPUS4-45662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittner, Maria A1 - Altmann, Korinna A1 - Hamann, Sven A1 - Weyer, Rüdiger A1 - Kalbe, Ute T1 - Assessment of Microplastic Emissions from Artificial Turf Sports Pitches N2 - Following the recommendation of the European Chemicals Agency, on 25 September 2023 the European Commission passed a comprehensive new regulation to reduce emissions of microplastics (MP) into the environment, which includes the sale and use of intentionally added MP.1,2 This also applies to the application of synthetic rubber granulate infill in artificial turf systems and will ultimately have an impact on recreational sports. In Germany, rubber granulate made of ethylene-propylene-diene-monomer rubber (EPDM) is currently predominantly used. So far, there is no sufficient database for estimating MP emissions from artificial turf pitches into the environment and thus their relevance as a source of MP pollution.3 This topic is controversially discussed due to the complexity of sampling and analytics. To close this research gap, this project has the goal to determine mass balances for the emissions of MP from artificial turf pitches to allow an estimation of the amount of MP released per artificial turf pitch and year. Within this study, MP emissions of three artificial turf scenarios at different time states (unaged, artificially aged and real-time aged) are compared: the past (old turf: fossil based, synthetic infill), present (most commonly installed in Europe: fossil based, EPDM infill), and the future (turf with recycled gras fibres, no synthetic infill). To simulate the outdoor weathering during the lifespan of an artificial turf of approx. 15 years, brand-new artificial turf and EPDM rubber granulate were accelerated aged by means of UV weathering and mechanical stress. Potential MP emissions into surface and groundwater are simulated by lysimeter and shake experiments. MP mass contents are subsequently determined by Thermal Extraction Desorption Gas Chromatography/Mass Spectrometry. Using special microfilter crucibles allows the estimation of the particle sizes of the emitted MP, which is a fundamental requirement for an assessment of potential health hazards for humans. T2 - SETAC 2024 CY - Seville, Spain DA - 05.05.2024 KW - Mikroplastik KW - TED-GC/MS KW - Lysimeter KW - PAK KW - Schwermetalle PY - 2024 AN - OPUS4-60014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wen, Keqing A1 - Gorbushina, Anna A. A1 - Schwibbert, Karin A1 - Bell, Jérémy T1 - A microfluidic platform for monitoring biofilm formation in flow under defined hydrodynamic conditions N2 - Bacterial adhesion on surfaces of medical, water and food applications may lead to infections, water or food spoilage and human illness. In comparison to traditional static and macro flow chamber assays for biofilm formation studies, microfluidic chips allow in situ monitoring of biofilm formation under various flow regimes, have better environment control and smaller sample requirements. In this work, a novel microfluidic platform is developed to investigate biofilm adhesion under precisely controlled bacteria concentration, temperature, and flow conditions. This platform central unit is a single-inlet microfluidic flow cell with a 5 mm wide chamber designed and tested to achieve ultra-homogenous flow in the central area of chamber. Within this area, defined microstructures are integrated that will disturb the homogeneity of the flow, thus changing bacterial adhesion pattern. Here we present the monitoring of bacterial biofilm formation in a microfluidic chip equipped with a microstructure known as micro-trap. This feature is based on a 3D bacteria trap designed by Di Giacomo et al. and successfully used to sequester motile bacteria. At first, fluorescent particles similar in size to Escherichia coli (E. coli) are used to simulate bacteria flow inside the flow cell and at the micro-trap. The turbulences induced by the trap are analyzed by imaging and particle tracking velocimetry (PTV). Secondly, the model strain E. coli TG1, ideal and well described for biofilm studies, is used to analyze biofilm formation in the micro-trap. Therefore, a stable fluorescent strain E. coli TG1-MRE-Tn7-141 is constructed by using Tn7 transposon mutagenesis according to the method described by Schlechter et al. Sequestering of E. coli cells within the micro-trap was followed using epifluorescence microscopy. The novel microfluidic platform shows great potential for assessment of bacterial adhesion under various flow regimes. The performance of structural feature with respect to the generation of turbulences that promote or reduce bacterial adhesion can be systematically examined. The combination of flow analysis and fluorescent strain injection into the microfluidic chip shows that the micro-trap is useful for capturing bacteria at defined positions and to study how flow conditions, especially micro-turbulences, can affect biofilm formation. It represents a powerful and versatile tool for studying the relation between topography and bacteria adhesion. T2 - International Conference on Miniaturized Systems for Chemistry and Life Sciences CY - Katowice, Poland DA - 15.10.2023 KW - Biofilm KW - E. coli KW - Microfluidics KW - Velocimetry KW - Fluorescence PY - 2023 AN - OPUS4-59593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cook, Jake Thomas A1 - Tonon, Chiara T1 - Assessment of concrete bioreceptivity in algal biofilm green façade systems N2 - Algal biofilm façades are an alternative to traditional green façades which can help to improve biodiversity and air quality within cities. They present a low maintenance approach in which subaerial algae are grown directly on concrete substrates. The intrinsic bioreceptivity of the substrate is a critical factor in successful facade colonisation. Existing research has identified several environmental and material properties which influence concrete bioreceptivity, however a consensus has yet to be made on which properties are most influential and how the interaction between properties may promote algal biofilm growth under specific conditions. T2 - International Conference on Bio-Based Building Materials CY - Vienna, Austria DA - 21.06.2023 KW - Concrete KW - Façade KW - Bio-receptive KW - Extracellular polymeric substances KW - Fractional factorial PY - 2023 UR - https://www.rilem.net/agenda/5th-international-conference-on-bio-based-building-materials-1501 AN - OPUS4-58976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strzelczyk, Rebecca A1 - Horn, Wolfgang A1 - Matthias, Richter A1 - Christoph, Grimmer T1 - Zeolites loaded with VOCs as reference for material emissions testing N2 - Nowadays, people spend most of their time indoors. Thus, a good indoor air quality is important. Emissions of volatile organic compounds (VOCs) from furniture and building materials can cause health complaints1. Quantitative VOC-emission testing is carried out under standardized conditions in emission test chambers. In the presented project an emission reference material (ERM) is developed that emits a defined mixture of VOCs which is required for quality assurance and -control (QA/QC) measures. Porous materials (e.g zeolites, activated carbons, MOFs or aerogels) are used as reservoir materials and impregnated with VOC. The porous materials are selected, among others, by their pore size, pore size distribution, polarity and availability. Due to their regular pore structure zeolites are tested at first. For a prediction of the emission profile, the ERM is supposed to exhibit a constant emission rate over time. The aim is a stability of ≤ 10 % change in the emission rate over a minimum of 14 days. Method For impregnation, the material is placed into an autoclave inside a rotatable basket. The VOC is added and the autoclave is closed. Afterwards, CO2 is inserted. The closed system is then heated to the supercritical point of CO2 (31 °C, 73.75 bar). In this state, the CO2 acts as solvent for the VOC. By rotating the basket, the distribution of the VOC is ensured. After a few minutes, the pressure is decreased slowly and the CO2 is released. For the determination of the emission profile, the impregnated sample is placed into an emission test chamber. These chambers can be operated either with dry or humid air (50 ± 5 % rel. humidity). Every second to third day, air samples are taken and analyzed by gas chromatography. For an ideal impregnation, several different pressures and temperatures as well as impregnation times are tested. Results Two zeolite materials tested in dry air conditions reach emission profiles with a decrease of less than 10 % over 14 days (heptane and toluene, respectively). Further it was discovered that smaller pellets of the same zeolite show better results than bigger particles. When the pore size of a zeolite is too small, e.g. 0.3 nm, the VOC cannot be absorbed sufficiently. The main disadvantage of zeolites is their hygroscopicity because it has a large impact on the release of VOC when they are used in emission test chambers under standardized test conditions (23 °C, 50 % rel. humidity). Activated carbons have emission profiles with a larger change over 14 days. However, the high hydrophobicity allows measurements in humid air conditions which was not possible with the before mentioned hygroscopic zeolites. It is possible to impregnate powdered materials as well, and thus powdered non-hygroscopic (n.h.) zeolites were impregnated. Their emission profiles are comparable to those of the activated carbons. The use of methylated hygroscopic zeolites with a decrease in hygroscopicity did not yield successful emission measurements. The change over 14 days is calculated only for the stable phase (~250–300 h). The desired stability of ≤ 10 % change of the emission rate over 14 days could already be reached under dry testing conditions. Further investigations under humid conditions show that zeolites with high Si/Al-ratios are non-hygroscopic and comparable to activated carbons (20–30 % change). The next step is to reduce the change in the emission rate of these materials to the aimed ≤ 10 % over 14 days. T2 - Deutsche Zeolithtagung CY - Jena, Germany DA - 28.02.2024 KW - VOC KW - Emission KW - Quality assurance KW - Reference material KW - Zeolite PY - 2024 AN - OPUS4-59843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strzelczyk, Rebecca A1 - Horn, Wolfgang A1 - Matthias, Richter A1 - Christoph, Grimmer T1 - Constant emitting reference material for emissions test procedures N2 - Since nowadays people spend most of their time indoors, a healthy environment is essential. Volatile organic compounds (VOCs) emitted from furniture and building materials are reported to cause health complaints. Therefore, the usage of low emitting materials will improve the indoor air quality. Quantitative VOC emission testing is usually conducted in emission test chambers under specified controlled conditions as described in DIN 16000-9 and DIN EN 16516. For reasons of quality control/quality assurance (QC/QA) and for a better comparability of test results from different laboratories, suitable emission reference materials (ERM) are needed. Here, it is important to have a homogenous material with known emission rates over a specific time. Different approaches can be found in literature, inter alia polymer films loaded with the target compound to be released again, or a lacquer material to which a VOC mixture is added. After curing of the lacquer, the material can be loaded into a test chamber. Drawback of those approaches are their relatively fast decreasing emission profiles. For QC/QA purposes according to the test standards, VOC sources with constant emission profiles are desirable. The EU-funded research project MetrIAQ “Metrology for the determination of emissions of dangerous substances from building materials into indoor air” is working on a multi-component ERM with an envisaged instability of ≤ 10 % in the emission rate over at least 14 days. Within a doctoral thesis porous materials are impregnated with VOCs. Supercritical CO2 is used as solvent. Thus, the impregnated material does not contain any solvent that may show a measurable amount of emission in the emission test chamber. Furthermore, CO2 has the benefits to have a good availability and low costs. For the selection of porous materials several properties like the pore size, the surface, and the interaction with the components in the atmosphere need to be considered. The impregnation method is optimised while the different porous materials are tested. For the selection of porous materials the pores need to be large enough for the VOC molecules, further influence of the pore size is tested. T2 - Healthy Buildings CY - Aachen, Germany DA - 11.06.2023 KW - VOC KW - Emission KW - Quality assurance KW - Reference material PY - 2023 AN - OPUS4-59842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Horn, Wolfgang A1 - Richter, Matthias A1 - Wilke, Olaf T1 - Volatile organic compounds from building products - Results from seven proficiency tests with emission test chambers conducted between 2008 and 2021 N2 - Emission testing of volatile organic compounds (VOC) from materials and products is commonly based on emission test chamber measurements. To ensure the comparability of results from different testing laboratories their measurement performance must be verified. For this purpose, Bundesanstalt für Materialforschung und -prüfung (BAM) organizes an international proficiency test every two years using well-characterised test materials (one sealant, one furniture board and four times a lacquer) with defined VOC emissions. The materials fulfilled the requirements of homogeneity, reproducibility, and stability. Altogether, 41 VOCs were included of which 37 gave test chamber air concentrations between 10 and 98 µg/m³. This is the typical concentration range to be expected and to be quantified when performing chamber tests. Four compounds had higher concentrations between 250 and 1105 µg/m³. The relative standard deviations (RSD) of BAM proficiency tests since 2008 are compared and the improvement of the comparability of the emission chamber testing is shown by the decrease of the mean RSD down to 23% in 2021. In contrast, the first large European interlaboratory comparison in 1999 showed a mean RSD of 51%. T2 - Proficiency Testing in Analytical Chemistry, Microbiology and Laboratory Medicine CY - Windsor, United Kingdom DA - 25.09.2023 KW - Proficiency Test KW - VOC-Emission KW - Chamber-test PY - 2023 AN - OPUS4-59694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Hahn, Oliver T1 - Development of a methodical approach for in-situ analysis of modern reverse paintings on glass N2 - The technique of painting on the reverse side of glass was rediscovered by artists in the early 20th century and gained great popularity, especially in Germany. In contrast to other paint techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession starting with the foremost paint layer and ending with the primer (backmost layer). The paintings are viewed in reflected light, thus revealing an impressive gloss, luminosity and depth of colour. Scientific investigation of the material provides important information for appropriate conservation concepts. Transport of the precious and fragile objects to the lab is often not feasible. Therefore, in-situ, non-invasive analysis is necessary to analyse colorants and binders. However, some analytical problems need to be considered: due to the reverse paint stratigraphy in reverse paintings on glass, the measured layer is always the backmost one. The analytical possibilities are extremely reduced, when the back is covered by a metal foil (or by paper, carton etc.). However, measurements through the glass (using Raman and VIS) can still yield information on the colourants of the front layer. When the paint layer is accessible, we start our procedure using X-ray fluorescence (Tracer III-SD, Bruker AXS Microanalysis GmbH, 40 kV, 15 μA) and VIS reflectance spectroscopy (SPM 100, Gretag-Imaging AG). Both techniques provide first information on the inorganic colourants. Raman measurements (i-Raman®Plus, Bwtek inc., 785 nm, 50× objective, resolution 4 cm-1) are then carried out to clarify uncertain XRF measurements and to identify synthetic organic pigments (SOP). Diffuse Reflection-Infrared-Fourier-Transform Spectroscopy (DRIFTS; ExoScan, Agilent GmbH, 4000–650 cm-1, 500 scans, spectral resolution 4 cm-1) is used for the classification of the binders. Moreover, it may help to identify SOP, when fluorescence dominates the Raman signal. This analytical sequence yields the best results, when time is the limiting factor. We present two in-situ studies of the paintings “Kreuzabnahme” (1914-15) by Carlo Mense and “Stadt am Morgen” (1921) by Walter Dexel. The painting “Kreuzabnahme” is an outstanding piece in Mense’s ɶuvre, because the glass plate was painted on both sides (Fig. 1). The results of the back-side show mainly inorganic pigments: basic lead white, talc, red and brown ochre, cinnabar, chrome yellow, viridian, ultramarine blue, Prussian blue and bone black. The classification of binding media using DRIFTS yields positive results for drying oil. Acrylic resin could be identified in two areas, resulting from a previous restauration treatment. For the front side painting, Mense used basic lead white, cinnabar, chrome yellow and umbra as pigments and oil as binder. Measurements of the abstract painting “Stadt am Morgen” by Walter Dexel show zinc white, basic lead white, chalk, cinnabar, red lead, strontium yellow, cadmium yellow, cobalt blue, Prussian blue, ultramarine blue, brown ochre and bone black as pigments. Moreover, synthetic alizarin (PR83) was identified as dark red colorant. The results of DRIFTS classify oil as binding media. We conclude that, the use of complementary spectroscopic methods yields the best results for in-situ analysis of reverse paintings on glass. T2 - 3rd International Conference on Innovation in Art Research and Technology CY - Parma, Italy DA - 26.03.2018 KW - Modern painting KW - Non invasive analysis KW - Raman spectroscopy PY - 2018 AN - OPUS4-44780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bandow, Nicole A1 - Kalbe, Ute A1 - Schoknecht, Ute T1 - Leaching of brominated flame retardants - eluate analysis using XRF N2 - Brominated flame retardants have widely been used for more than 50 years and have been frequently detected in environmental samples as surface water and fish. Leaching from construction products was identified as one possible source. The use of substances as e.g. hexabromocyclododecane (HBCCD) was restricted recently due to increasing concern about negative impacts on the environment and human health caused by the persistent, bio accumulative and toxic properties. New polymeric brominated flame retardants have been developed to replace HBCCD in expanded polystyrene (XPS), which is used for insulation of buildings. It is assumed that the release from the polymer is much smaller in comparison to release of small molecules as HBCCD. The release from the polymer may include monomers or small fragments of different size. Thus, a sum parameter is needed. According to Schlummer et al. it is possible to detect brominated molecules using X-ray fluorescence spectroscopy by determination of brome content in XPS extracts. As only small brominated compounds can be extracted it also allows for the differentiation between the two classes of compounds. This method was applied to verify the presence of different kinds of flame retardants in XPS samples and to evaluate the leaching behavior. T2 - ESAS CANAS CY - Berlin, Germany DA - 21.03.2018 KW - Leaching KW - XPS KW - Flame-retardant KW - XRF PY - 2018 AN - OPUS4-44562 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -