TY - JOUR A1 - Chubarenko, B. A1 - Kileso, A. A1 - Esiukova, E. A1 - Pinchuk, V. A1 - Simon, Franz-Georg T1 - Dataset on geosynthetic material debris contamination of the South-East Baltic shore N2 - The database gives information on the contamination of the shore of the South-Eastern Baltic with the debris of geosynthetic materials for the period 2018–2020. This new type of coastal pollution enters the natural environment due to the destruction of coastal protection structures and construction activities. The database contains sections: (1) a list of types of geosynthetic material residues, their photographic images and photographs illustrating examples of finds in natural conditions [1 List_geosynthetic_debris_SEB], (2) monitoring data on the contamination of the beach strip with the debris of geotextiles, braids from gabions, geocontainers (big bags), geocells and geogrids for the beaches of the South-Eastern Baltic for the period 2018–2020 [2 Monitoring_geosynthetic_debris_SEB]; (3) statistical distributions of the found geosynthetic debris by size [3 Scales_geosynthetic_debris_SEB] and (4) results of test surveys on the shores of Lithuania and Poland adjacent to Kaliningrad Oblast. All data refer to the beaches of the Kaliningrad Oblast (Russia), including the Russian parts of the Vistula and Curonian Spits, but also contains information on a one-time assessment of the pollution of the beaches of the adjacent territories: the Polish shore from the Poland-Russia border on the Vistula Spit to the mouth of the Vistula River, the Lithuanian shore from the border Lithuania-Russia on the Curonian Spit to the border of Latvia-Lithuania. Materials were collected during field surveys within the ERANET-RUS_Plus joint project EI-GEO, ID 212 (RFBR 18-55-76002 ERA_a, BMBF 01DJ18005). KW - Geosynthetics KW - Geotextiles KW - Contamination KW - Marine littering PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541947 DO - https://doi.org/10.1016/j.dib.2021.107778 SN - 2352-3409 VL - 40 SP - 1 EP - 7 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-54194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cros, A. A1 - Alfaro Espinoza, Gabriela A1 - De Maria, A. A1 - Wirth, N. T. A1 - Nikel, P. I. T1 - Synthetic metabolism for biohalogenation N2 - The pressing need for novel bioproduction approaches faces a limitation in the number and type of molecules accessed through synthetic biology. Halogenation is widely used for tuning physicochemical properties of molecules and polymers, but traditional halogenation chemistry often lacks specificity and generates harmful by-products. Here, we pose that deploying synthetic metabolism tailored for biohalogenation represents an unique opportunity towards economically attractive and environmentally friendly organohalide production. On this background, we discuss growth-coupled selection of functional metabolic modules that harness the rich repertoire of biosynthetic and biodegradation capabilities of environmental bacteria for in vivo biohalogenation. By rationally combining these approaches, the chemical landscape of Living cells can accommodate bioproduction of added-value organohalides which, as of today, are obtained by traditional chemistry. KW - Halogenation KW - Synthetic metabolism PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542013 DO - https://doi.org/10.1016/j.copbio.2021.11.009 SN - 0958-1669 SN - 1879-0429 VL - 74 SP - 180 EP - 193 PB - Elsevier CY - Amsterdam AN - OPUS4-54201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valentin, J. A1 - Straub, H. A1 - Pietsch, Franziska A1 - Lemare, M. A1 - Ahrens, C. A1 - Schreiber, Frank A1 - Webb, J. A1 - van der Mei, H. A1 - Ren, Q. T1 - Role of the flagellar hook in the structural development and antibiotic tolerance of Pseudomonas aeruginosa biofilms N2 - Pseudomonas aeruginosa biofilms exhibit an intrinsic resistance to antibiotics and constitute a considerable clinical threat. In cystic fibrosis, a common feature of biofilms formed by P. aeruginosa in the airway is the occurrence of mutants deficient in flagellar motility. This study investigates the impact of flagellum deletion on the structure and antibiotic tolerance of P. aeruginosa biofilms, and highlights a role for the flagellum in adaptation and cell survival during biofilm development. Mutations in the flagellar hook protein FlgE influence greatly P. aeruginosa biofilm structuring and antibiotic tolerance. Phenotypic analysis of the flgE knockout mutant compared to the wild type (WT) reveal increased fitness under planktonic conditions, reduced initial adhesion but enhanced formation of microcolony aggregates in a microfluidic environment, and decreased expression of genes involved in exopolysaccharide formation. Biofilm cells of the flgE knock-out mutant display enhanced tolerance towards multiple antibiotics, whereas its planktonic cells show similar resistance to the WT. Confocal microscopy of biofilms demonstrates that gentamicin does not affect the viability of cells located in the inner part of the flgE knock-out mutant biofilms due to reduced penetration. These findings suggest that deficiency in flagellar proteins like FlgE in biofilms and in cystic fibrosis infections represent phenotypic and evolutionary adaptations that alter the structure of P. aeruginosa biofilms conferring increased antibiotic tolerance. KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541113 DO - https://doi.org/10.1038/s41396-021-01157-9 SN - 1751-7370 VL - 16 IS - 4 SP - 1176 EP - 1186 PB - Springer Nature AN - OPUS4-54111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seeger, Stefan A1 - Osan, J. A1 - Czömpöly, O. A1 - Gross, A. A1 - Stosnach, H. A1 - Stabile, L. A1 - Ochsenkuehn-Petropoulou, M. A1 - Tsakanika, L. A1 - Lymperopoulou, T. A1 - Goddard, S. A1 - Fiebig, M. A1 - Gaie-Levrel, F. A1 - Kayser, Y. A1 - Beckhoff, B. T1 - Quantification of Element Mass Concentrations in Ambient Aerosols by Combination of Cascade Impactor Sampling and Mobile Total Reflection X-ray Fluorescence Spectroscopy N2 - Quantitative chemical analysis of airborne particulate matter (PM) is vital for the understanding of health effects in indoor and outdoor environments, as well as for enforcing EU air quality regulations. Typically, airborne particles are sampled over long time periods on filters, followed by lab-based analysis, e.g., with inductively coupled plasma mass spectrometry (ICP-MS). During the EURAMET EMPIR AEROMET project, cascade impactor aerosol sampling is combined for the first time with on-site total reflection X-ray fluorescence (TXRF) spectroscopy to develop a tool for quantifying particle element compositions within short time intervals and even on-site. This makes variations of aerosol chemistry observable with time resolution only a few hours and with good size resolution in the PM10 range. The study investigates the proof of principles of this methodological approach. Acrylic discs and silicon wafers are shown to be suitable impactor carriers with sufficiently smooth and clean surfaces, and a non-destructive elemental mass concentration measurement with a lower limit of detection around 10 pg/m3 could be achieved. We demonstrate the traceability of field TXRF measurements to a radiometrically calibrated TXRF reference, and the results from both analytical methods correspond satisfactorily. KW - TXRF KW - Reference method KW - Cascade impactor KW - Ambient aerosols KW - Particles KW - Air quality monitoring KW - Element mass concentration KW - Size resolved chemical composition KW - Time resolved chemical composition KW - ICP-MS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521860 UR - http://www.aerometproject.com/ DO - https://doi.org/10.3390/atmos12030309 SN - 2073-4433 VL - 12 IS - 3 SP - 309 EP - 337 PB - MDPI CY - Basel, Schweiz AN - OPUS4-52186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weimann, Karin A1 - Adam, Christian A1 - Buchert, M. A1 - Sutter, J. T1 - Environmental Evaluation of Gypsum Plasterboard Recycling N2 - Gypsum is widely used in the construction sector and its worldwide consumption has been increasing for several decades. Depending on the life-time of the used gypsum products, an increase of gypsum in construction and demolition waste follows. Especially against the background of a circular economy, the recycling of waste gypsum is of growing importance. However, the use of recycled gypsum makes only sense if it is environmentally friendly. Therefore, an evaluation of the environmental impacts of an industrial-scale processing for the recycling of post-consumer gypsum waste was conducted. The evaluation was performed with an established life cycle assessment software. Original data provided by industry and complementary data from a database for life cycle assessments were used for the calculations. Two scenarios for recycled gypsum with different transportation distances were calculated. These results are compared with results of the environmental evaluation of gypsum derived from coal-fired power plants (FGD gypsum) and natural gypsum. The results show that utilization of recycled gypsum can be environmentally advantageous compared to the use of natural gypsum or FGD gypsum, especially in the impact categories land transformation and resource consumption (abiotic depletion potential). For most environmental impact categories the specific transportation distances have a strong influence. KW - Gypsum plasterboards KW - Gypsum waste KW - Recycled gypsum KW - Environmental evaluation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522321 DO - https://doi.org/10.3390/min11020101 SN - 2075-163X VL - 11 IS - 2 SP - 101 PB - MDPI CY - Basel, Schweiz AN - OPUS4-52232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koester, M. A1 - Stock, S. C. A1 - Nájera, F. A1 - Abdallah, Khaled A1 - Gorbushina, Anna A1 - Prietzel, J. A1 - Matus, F. A1 - Klysubun, W. A1 - Boy, J. A1 - Kuzyakov, Y. A1 - Dippold, M. A. A1 - Spielvogel, S. T1 - From rock eating to vegetarian ecosystems — Disentangling processes of phosphorus acquisition across biomes N2 - Low-molecular-weight organic acids (LMWOAs) are crucial for the mobilization and acquisition of mineral phosphorus by plants. However, the role of LMWOAs in mobilizing organic phosphorus, which is the predominant phosphorus form in at least half of the world’s ecosystems, especially in humid climates, is unclear. The mechanisms of phosphorus mobilization by LMWOAs depend on climate, mainly precipitation, and shape the phosphorus nutrition strategies of plants. We disentangled the impact of roots and associated microorganisms on mechanisms of phosphorus cycling mediated by LMWOAs by studying soils along an ecosystem-sequence (ecosequence) from arid shrubland (~70 mm yr-1), and Mediterranean woodland (~370 mm yr-1) to humid-temperate forest (~1470 mm yr-1). Phosphorus speciation in soil was examined by X-ray absorption near edge structure analysis (XANES). LMWOAs were quantified as biological rock-weathering and organic phosphorus mobilization agents and compared to kinetics of acid phosphatase as a proxy for organic phosphorus mineralization. Calcium-bound phosphorus in topsoils decreased from 126 mg kg-1 in the arid shrubland, to 19 mg kg-1 in the Mediterranean woodland and was undetectable in the humid-temperate forest. In contrast, organic phosphorus in topsoils in close root proximity (0–2 mm distance to roots) was absent in the arid shrubland but raised to 220 mg kg-1 in the Mediterranean woodland and to 291 mg kg-1 in the humid-temperate forest. The organic phosphorus content in topsoils was 1.6 to 2.4 times higher in close root proximity (0–2 mm distance to roots) compared to bulk soil (4–6 mm distance to roots) in the Mediterranean woodland and humid-temperate forest, showing intensive phosphorus bioaccumulation in the rhizosphere. Redundancy analysis (RDA) revealed that LMWOAs were explained by the content of hydroxyapatite and variscite phosphorus-species in the arid shrubland, indicating that LMWOAs contribute to mineral weathering in this soil. LMWOA contents, phosphatase activity, and microbial biomass carbon correlated strongly with organic phosphorus in the humid-temperate forest soil, which implies a high relevance of LMWOAs for organic phosphorus recycling. In the Mediterranean woodland soil, however, oxalic acid correlated with organic phosphorus in the topsoil (suggesting phosphorus recycling), whereas in the subsoil malic and citric acid were correlated with primary and secondary phosphorus minerals (implying mineral weathering). We conclude that phosphorus acquisition and cycling depend strongly on climate and that the functions of LMWOAs in the rhizosphere change fundamentally along the precipitation gradient. In the arid shrubland LMWOAs facilitate biochemical weathering (rock eating), while in the humid-temperate forest their functions change towards supporting organic phosphorus recycling (vegetarian). KW - Rhizosphere processes KW - Phosphorus K-edge-XANES spectroscopy KW - Low-molecular-weight organic substances KW - Organic phosphorus breakdown KW - Biogenic weathering KW - Climate gradient PY - 2020 DO - https://doi.org/10.1016/j.geoderma.2020.114827 VL - 388 SP - 114827 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-51931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Selbmann, L. A1 - Benkő, Z. A1 - Coleine, C. A1 - de Hoog, S. A1 - Donati, C. A1 - Druzhinina, I. A1 - Emri, T. A1 - Ettinger, C. L. A1 - Gladfelter, A. S. A1 - Gorbushina, Anna A1 - Grigoriev, I. V. A1 - Grube, M. A1 - Gunde-Cimerman, N. A1 - Karányi, Z. A. A1 - Kocsis, B. A1 - Kubressoian, T. A1 - Miklós, I. A1 - Miskei, M. A1 - Muggia, L. A1 - Northen, T. A1 - Novak-Babič, M. A1 - Pennacchio, C. A1 - Pfliegler, W. P. A1 - Pòcsi, I. A1 - Prigione, V. A1 - Riquelme, M. A1 - Segata, N. A1 - Schumacher, Julia A1 - Shelest, E. A1 - Sterflinger, K. A1 - Tesei, D. A1 - U’Ren, J. M. A1 - Varese, G. C. A1 - Vázquez-Campos, X. A1 - Vicente, V. A. A1 - Souza, E. M. A1 - Zalar, P. A1 - Walker, A. K. A1 - Stajich, J. E. T1 - Shed Light in the DaRk LineagES of the Fungal Tree of Life—STRES N2 - The polyphyletic group of black fungi within the Ascomycota (Arthoniomycetes, Dothideomycetes, and Eurotiomycetes) is ubiquitous in natural and anthropogenic habitats. Partly because of their dark, melanin-based pigmentation, black fungi are resistant to stresses including UV- and ionizing-radiation, heat and desiccation, toxic metals, and organic pollutants. Consequently, they are amongst the most stunning extremophiles and poly-extreme-tolerant organisms on Earth. Even though ca. 60 black fungal genomes have been sequenced to date, [mostly in the family Herpotrichiellaceae (Eurotiomycetes)], the class Dothideomycetes that hosts the largest majority of extremophiles has only been sparsely sampled. By sequencing up to 92 species that will become reference genomes, the “Shed light in The daRk lineagES of the fungal tree of life” (STRES) project will cover a broad collection of black fungal diversity spread throughout the Fungal Tree of Life. Interestingly, the STRES project will focus on mostly unsampled genera that display different ecologies and life-styles (e.g., ant- and lichen-associated fungi, rock-inhabiting fungi, etc.). With a resequencing strategy of 10- to 15-fold depth coverage of up to ~550 strains, numerous new reference genomes will be established. To identify metabolites and functional processes, these new genomic resources will be enriched with metabolomics analyses coupled with transcriptomics experiments on selected species under various stress conditions (salinity, dryness, UV radiation, oligotrophy). The data acquired will serve as a reference and foundation for establishing an encyclopedic database for fungal metagenomics as well as the biology, evolution, and ecology of the fungi in extreme environments. KW - Adaptation KW - Black fungi KW - Dothideomycetes KW - Eurotiomycetes KW - Extremophiles KW - Genomics KW - Metabolomics KW - Secondary metabolites KW - Stress conditions KW - Transcriptomics PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519328 DO - https://doi.org/10.3390/life10120362 VL - 10 IS - 12 SP - 362 PB - MDPI CY - Basel AN - OPUS4-51932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tonon, C. A1 - Breitenbach, Romy A1 - Voigt, Oliver A1 - Turci, F. A1 - Gorbushina, Anna A1 - Favero-Longo, S. E. T1 - Hyphal morphology and substrate porosity -rather than melanization- drive penetration of black fungi into carbonate substrates N2 - Due to their ability to penetrate, deteriorate and discolour stone surfaces, rock-inhabiting black fungi represent a remarkable issue for cultural heritage conservation. Black microcolonial fungi (MCF) can also adapt to different environmental conditions, by converting from yeast-like morphology to a peculiar meristematic development with swollen cells (torulose hyphae, TH), to extremely thin structures (filamentous hyphae, FH). Furthermore, black MCF produce protective pigments: melanin, dark pigment particularly evident on light stone surfaces, and carotenoids. Black fungi produce melanin in critical, oligotrophic conditions as well as constitutively. Melanin function is mostly related to stress resistance and the ability of fungi to generate appressorial turgor to actively penetrate plant cells in pathogenic species. An involvement of melanins in stone surface penetration has been suggested, but not experimentally proved. In this work, we tested the role of hyphal melanisation in penetration mechanisms on the model black fungus Knufia petricola A95 in lab conditions. The wild-type and three mutants with introduced targeted mutations of polyketide-synthases (melanin production) and/or phytoene dehydrogenase (carotenoid synthesis) were inoculated on artificial carbonate pellets (pressed Carrara marble powder) of different porosity. After 5, 10, 17 and 27 weeks, hyphal penetration depth and spread were quantified on periodic acid Schiff-stained cross-sections of the pellets, collecting measurements separately for TH and FH. Droplet assay of the mutants on different media were conducted to determine the role of nutrients in the development of different fungal morphologies. In our in vitro study, the hyphal penetration depth, never exceeding 200 μm, was proven to be consistent with observed penetration patterns on stone heritage carbonate substrates. Pellet porosity affected penetration patterns of TH, which developed in voids of the more porous pellets, instead than actively opening new passageways. Oppositely, the thin diameter of FH allowed their penetration independently of substrate porosity. Instead, the long-hypothesized crucial role of melanin in black MCF hyphal penetration should be rejected. TH were developed within the pellets also by melanin deficient strains, and melanized strains showed an endolithic component of non-melanized TH. FH were non-melanized for all the strains, but deeply penetrated all pellet types, with higher penetration depth probably related to their potential exploratory (nutrient-seeking) role, while TH may be more related to a resistance to surface stress factors. In the melanin deficient strains, the absence of melanin caused an increased penetration rate of FH, hypothetically related to an earlier necessity to search for organic nutrients. KW - Biodeterioration KW - Bioreceptivity KW - Black microcolonial fungi KW - Marble KW - Stone cultural heritage KW - Stress tolerance PY - 2020 DO - https://doi.org/10.1016/j.culher.2020.11.003 VL - 48 SP - 244 EP - 253 PB - Elsevier Masson SAS CY - Paris, Amsterdam AN - OPUS4-51933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Even, Morgane A1 - Wilke, Olaf A1 - Kalus, Sabine A1 - Schultes, P. A1 - Hutzler, C. A1 - Luch, A. T1 - Formaldehyde emissions from wooden toys: Comparison of different measurement methods and assessment of exposure N2 - Formaldehyde is considered as carcinogenic and is emitted from particleboards and plywood used in toy manufacturing. Currently, the flask method is frequently used in Europe for market surveillance purposes to assess formaldehyde release from toys, but its concordance to Levels measured in emission test chambers is poor. Surveillance laboratories are unable to afford laborious and expensive emission chamber testing to comply with a new amendment of the European Toy Directive; they need an alternative method that can provide reliable results. Therefore, the application of miniaturised emission test chambers was tested. Comparisons between a 1 m3 emission test chamber and 44 mL microchambers with two particleboards over 28 days and between a 24 L desiccator chamber and the microchambers with three puzzle samples over 10 days resulted in a correlation coefficient r2 of 0.834 for formaldehyde at steady state. The correlation between the results obtained in microchambers vs. flask showed a high variability over 10 samples (r2: 0.145), thereby demonstrating the error-proneness of the flask method in comparison to methods carried out under ambient parameters. An exposure assessment was also performed for three toy puzzles: indoor formaldehyde concentrations caused by puzzles were not negligible (up to 8 µg/m3), especially when more conservative exposure scenarios were considered. KW - EN 717-3 KW - Formaldehyde KW - Wooden toys KW - Emission test chamber KW - Flask method KW - Microchamber PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520196 DO - https://doi.org/10.3390/ma14020262 VL - 14 IS - 2 (Special issue: Measurement of the environmental impact of materials) SP - 262-1 EP - 262-16 PB - MDPI AN - OPUS4-52019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Franziska, Pietsch A1 - Nordholt, Niclas A1 - Heidrich, Gabriele A1 - Schreiber, Frank T1 - Prevalent Synergy and Antagonism Among Antibiotics and Biocides in Pseudomonas aeruginosa N2 - Antimicrobials can exert specific physiological effects when used in combination that are different from those when applied alone. While combination effects have been extensively mapped for antibiotic-antibiotic combinations, the combination effects of antibiotics with antimicrobials used as biocides or antiseptics have not been systematically investigated. Here, we investigated the effects of combinations of antibiotics (meropenem, gentamicin, and ciprofloxacin) and substances used as biocides or antiseptics [octenidine, benzalkonium chloride, cetrimonium bromide, chlorhexidine, Povidone-iodine, silver nitrate (AgNO3), and Ag-nanoparticles] on the planktonic growth rate of Pseudomonas aeruginosa. Combination effects were investigated in growth experiments in microtiter plates at different concentrations and the Bliss interaction scores were calculated. Among the 21 screened combinations, we find prevalent combination effects with synergy occurring six times and antagonism occurring 10 times. The effects are specific to the antibiotic-biocide combination with meropenem showing a tendency for antagonism with biocides (6 of 7), while gentamicin has a tendency for synergy (5 of 7). In conclusion, antibiotics and biocides or antiseptics exert physiological combination effects on the pathogen P. aeruginosa. These effects have consequences for the efficacy of both types of substances and potentially for the selection of antimicrobial resistant strains in clinical applications with combined exposure (e.g., wound care and coated biomaterials). KW - Synergy KW - Antagonism KW - Suppression KW - Biocides KW - Antibiotics KW - Pseudomonas aeruginosa PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520845 DO - https://doi.org/10.3389/fmicb.2020.615618 VL - 11 SP - Article 615618 PB - Frontiers CY - Lausanne AN - OPUS4-52084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -