TY - JOUR A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Measurement of very volatile organic compounds (VVOCs) in indoor air by sorbent-based active sampling: Identifying the gaps towards standardisation N2 - The ISO 16000-6 standard describes a method for the determination of volatile organic compounds (VOCs) in indoor and test chamber air by sorbent-based active sampling, thermal desorption and gas chromatography coupled with mass spectrometry (GC/MS). It also gives directions to adapt this methodology to very volatile organic compounds (VVOCs). Indeed, toxicologically based guideline values are being implemented for these compounds and it becomes necessary to measure them. But a comprehensive and robust measurement method is lacking. This work highlights the points that still need to be explored towards the standardisation of a suitable procedure: investigations on sorbent combinations, the suitability of chromatography columns and the use of gaseous standards are required. The biggest challenge remains in the fact that strong sorbents adsorb water together with VVOCs. Water may impair the analysis and the optimal approach to eliminate it is still to be found and integrated into the sampling strategy. KW - Solvents KW - Air analysis KW - VOC KW - Thermal desorption KW - Gas chromatography KW - ISO 16000-6 PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523919 DO - https://doi.org/10.1016/j.trac.2021.116265 VL - 140 SP - 116265 PB - Elsevier B.V. AN - OPUS4-52391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nehring, Grzegorz A1 - Bonnerot, Olivier A1 - Gerhardt, M. A1 - Krutzsch, M. A1 - Rabin, Ira T1 - Looking for the missing link in the evolution of black inks N2 - In the transition from carbon to iron-gall inks, the two documents from the Egyptian Museum and Papyrus Collection in Berlin with shelfmarks P 13500 and P 13501 discussed in this work present an important case. Their inks appear brownish, although they date back to the fourth and third century BCE, when carbon inks are believed to have been commonly if not exclusively used. Using imaging micro-X-ray fluorescence and infrared reflectography, we discovered that the inks in both documents contain a significant amount of copper in addition to carbon. Comparing the extant recipes for black writing inks and the experimental evidence, we suggest that these inks are a transition between the pure carbon and the iron-gall inks. Such inks may have been quite common before the production of iron-gall ink was clearly understood and established. KW - Black writing ink KW - Hellenistic KW - Papyrus KW - XRF imaging KW - NIR imaging PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523708 DO - https://doi.org/10.1007/s12520-021-01320-5 VL - 13 IS - 4 SP - Article 71 PB - Springer AN - OPUS4-52370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herzel, Hannes A1 - Stemann, J. A1 - Simon, Sebastian A1 - Adam, Christian T1 - Comparison of thermochemical treatment of sewage sludge ash with sodium sulphate in laboratory-scale and pilot-scale experiments N2 - There is an ongoing debate on European scale concerning the criticality of phosphorus. In Switzerland and Germany, phosphorus recovery from phosphorus-rich waste streams will become obligatory. Sewage sludge ash is rich in phosphorus and may become an important secondary feedstock. Thermochemical treatment of sewage sludge ash with sodium sulphate under reducing conditions was shown to remove heavy metals from the solid product and produce the fully plant available crystalline phase CaNaPO4. Pilot-scale experiments in a rotary kiln were carried out at temperatures between 750 and 1000 °C and were compared to laboratory-scale experiments with crucibles. Process upscaling was successfully demonstrated but a series of differences were noticed: In comparison to laboratory-scale, solubility of phosphorus in samples from pilot-scale experiments was lower at all chosen treatment temperatures because of shorter retention time and incomplete decomposition of sodium sulphate. X-ray diffraction analysis revealed remaining phase fractions of whitlockite (Ca3-x(Mg,Fe)x(PO4)2) and sodium sulphate from the starting materials in products and thus indicated incomplete reaction. In contrast to the results of laboratory-scale experiments, the crystalline phase CaNaPO4 was clearly absent in the products from the rotary kiln but instead a Mg-bearing phase (Ca,Mg)NaPO4 was formed. Laboratory-scale experiments confirmed (Ca,Mg)NaPO4 is an intermediate phase between whitlockite and CaNaPO4. However, both crystalline phases are characterized by high plant availability. It was shown that heavy metal removal increased at higher temperatures whereas solubility and thus plant availability of phosphorus already reached its maxima at temperatures of 950 °C in pilot-scale and 875 °C in laboratory-scale experiments. KW - Crystalline phase identification KW - Heavy metal removal KW - Phosphorus availability KW - Process upscaling KW - Recovery KW - Rhenanite PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524084 DO - https://doi.org/10.1007/s13762-021-03252-y VL - 19 IS - 3 SP - 1997 EP - 2006 PB - Springer AN - OPUS4-52408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Matthias A1 - Horn, Wolfgang A1 - Juritsch, Elevtheria A1 - Klinge, A. A1 - Radeljic, L. A1 - Jann, Oliver T1 - Natural building materials for interior fitting and refurbishment - What about indoor emissions? N2 - Indoor air quality can be adversely affected by emissions from building materials, consequently having a negative impact on human health and well-being. In this study, more than 30 natural building materials (earth dry boards and plasters, bio-based insulation materials, and boards made of wood, flax, reed, straw, etc.) used for interior works were investigated as to their emissions of (semi-) volatile organic compounds ((S)VOC), formaldehyde, and radon. The study focused on the emissions from complete wall build-ups as they can be used for internal Partition walls and the internal insulation of external walls. Test chambers were designed, allowing the compounds to release only from the surface of the material facing indoors under testing Parameters that were chosen to simulate model room conditions. The emission test results were evaluated using the AgBB evaluation scheme, a procedure for the health-related evaluation of construction products and currently applied for the approval of specific groups of building materials in Germany. Seventeen out of 19 sample build-ups tested in this study would have passed this scheme since they generally proved to be low-emitting and although the combined emissions of multiple materials were tested, 50% of the measurements could be terminated before half of the total testing time. KW - Bio-based insulation KW - Earthen building materials KW - Volatile organic compounds KW - Semivolatile organic compounds KW - Radon PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519634 DO - https://doi.org/10.3390/ma14010234 VL - 14 IS - 1 (Special issue: Measurement of the environmental impact of materials) SP - 234-1 EP - 234-14 PB - MDPI CY - Basel AN - OPUS4-51963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Even, Morgane A1 - Wilke, Olaf A1 - Kalus, Sabine A1 - Schultes, P. A1 - Hutzler, C. A1 - Luch, A. T1 - Formaldehyde emissions from wooden toys: Comparison of different measurement methods and assessment of exposure N2 - Formaldehyde is considered as carcinogenic and is emitted from particleboards and plywood used in toy manufacturing. Currently, the flask method is frequently used in Europe for market surveillance purposes to assess formaldehyde release from toys, but its concordance to Levels measured in emission test chambers is poor. Surveillance laboratories are unable to afford laborious and expensive emission chamber testing to comply with a new amendment of the European Toy Directive; they need an alternative method that can provide reliable results. Therefore, the application of miniaturised emission test chambers was tested. Comparisons between a 1 m3 emission test chamber and 44 mL microchambers with two particleboards over 28 days and between a 24 L desiccator chamber and the microchambers with three puzzle samples over 10 days resulted in a correlation coefficient r2 of 0.834 for formaldehyde at steady state. The correlation between the results obtained in microchambers vs. flask showed a high variability over 10 samples (r2: 0.145), thereby demonstrating the error-proneness of the flask method in comparison to methods carried out under ambient parameters. An exposure assessment was also performed for three toy puzzles: indoor formaldehyde concentrations caused by puzzles were not negligible (up to 8 µg/m3), especially when more conservative exposure scenarios were considered. KW - EN 717-3 KW - Formaldehyde KW - Wooden toys KW - Emission test chamber KW - Flask method KW - Microchamber PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520196 DO - https://doi.org/10.3390/ma14020262 VL - 14 IS - 2 (Special issue: Measurement of the environmental impact of materials) SP - 262-1 EP - 262-16 PB - MDPI AN - OPUS4-52019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Olaf A1 - Horn, Wolfgang A1 - Richter, Matthias A1 - Jann, Oliver T1 - Volatile organic compounds from building products - Results from six round robin tests with emission test chambers conducted between 2008 and 2018 N2 - Emission testing of volatile organic compounds (VOC) from materials and products is commonly based on emission test chamber measurements. To ensure the comparability of results from different testing laboratories, their measurement performance must be verified. For this purpose, Bundesanstalt für Materialforschung und -prüfung (BAM) organizes an international proficiency test (round robin test, RRT) every two years using well-characterized test materials (one sealant, one furniture board, and four times a lacquer) with defined VOC emissions. The materials fulfilled the requirements of homogeneity, reproducibility, and stability. Altogether, 36 VOCs were included of which 33 gave test chamber air concentrations between 13 and 83 µg/m3. This is the typical concentration range to be expected and to be quantified when performing chamber tests. Three compounds had higher concentrations between 326 and 1105 µg/m3. In this paper, the relative standard deviations (RSD) of BAM round robin tests since 2008 are compared and the improvement of the comparability of the emission chamber testing is shown by the decrease of the mean RSD down to 28 % in 2018. In contrast, the first large European interlaboratory comparison in 1999 showed a mean RSD of 51 %. KW - Construction product KW - Emission test chamber KW - Interlaboratory comparison KW - Proficiency testing KW - Rround robin test KW - VOC emission PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526139 DO - https://doi.org/10.1111/ina.12848 VL - 31 IS - 6 SP - 2049 EP - 2057 PB - Wiley AN - OPUS4-52613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brandt, S. A1 - Müller, B. A1 - Brozowski, F. A1 - Plehn, W. A1 - Horn, Wolfgang T1 - Weiterentwicklung des Geruchsmessverfahrens für Bauprodukte T1 - Further development of the odour measurement method for building products N2 - Bauprodukte und Einrichtungsgegenstände für Innenräume, wie Bodenbeläge und Wandpaneele, sollen das Wohlbefinden und die Gesundheit der Raumnutzerinnen und -nutzer nicht durch das Ausdünsten von Geruchsstoffen stören. Mit der Geruchsprüfung nach ISO 16000-28 „Innenraumluft - Bestimmung der Geruchsstoffemissionen aus Bauprodukten mit einer Emissionsprüfkammer“ wird der Produktgeruch zu einer messbaren Größe. So kann z. B. die empfundene Intensität, also die Stärke eines Geruchseindruckes, mit Hilfe eines Vergleichsmaßstabes von Probandinnen und Probanden ermittelt werden. Im hier vorgestellten Projekt werden Vorschläge zur Weiterentwicklung der Methode vorgestellt, um im Ergebnis die Reproduzierbarkeit der Messergebnisse weiter zu verbessern. Dabei werden vor allem das Probenpräsentationssystem und die Bewertungsmethodik für die empfundene Intensität bei der Bewertung von Bauprodukten gemäß AgBB-Schema betrachtet, da diese einen wesentlichen Einfluss haben. N2 - Emissions or odours occurring from building products and furnishings for interiors, like floor coverings or wall panels, should not have a negative impact on well-being or health. Odours can be measured applying the standard ISO 16000-28 „Indoor air - Determination of odour emissions from building products using test chambers” It describes among other procedures the assessment of perceived intensi-ty with comparative scale by a group of panellists. In the study presented here, proposals for further technical development of the methodology are discussed to increase the reproducibility of measurement results. The sampling procedure and evaluation method of perceived intensity are investigated in particular because they have a major influence at the assessment of construction products applying the procedure of the Committee for Health Evaluation of Building Products. KW - Geruchsmessung KW - Emissionen KW - Bauprodukte KW - VOC PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527458 UR - http://www.gefahrstoffe.de SN - 0949-8036 SN - 1436-4891 VL - 81 IS - 3-4 SP - 151 EP - 155 PB - VDI Fachmedien CY - Düsseldorf AN - OPUS4-52745 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cunliffe, A. J. A1 - Askew, P. D. A1 - Stephan, Ina A1 - Iredale, G. A1 - Cosemans, P. A1 - Simmons, L. M. A1 - Verran, J. A1 - Redfern, J. T1 - How do we determine the efficacy of an antibacterial surface? A review of standardised antibacterial material testing methods N2 - Materials that confer antimicrobial activity, be that by innate property, leaching of biocides or design features (e.g., non-adhesive materials) continue to gain popularity to combat the increasing and varied threats from microorganisms, e.g., replacing inert surfaces in hospitals with copper. To understand how efficacious these materials are at controlling microorganisms, data is usually collected via a standardised test method. However, standardised test methods vary, and often the characteristics and methodological choices can make it difficult to infer that any perceived antimicrobial activity demonstrated in the laboratory can be confidently assumed to an end-use setting. This review provides a critical analysis of standardised methodology used in academia and industry, and demonstrates how many key methodological choices (e.g., temperature, humidity/moisture, airflow, surface topography) may impact efficacy assessment, highlighting the need to carefully consider intended antimicrobial end-use of any product. KW - Antimicrobial materials KW - Antimicrobial testing KW - ISO 22196 KW - Antimicrobial surfaces KW - Antibacterial coatings PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532138 DO - https://doi.org/10.3390/antibiotics10091069 SN - 2079-6382 VL - 10 IS - 9 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-53213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Franziska, Pietsch A1 - Nordholt, Niclas A1 - Heidrich, Gabriele A1 - Schreiber, Frank T1 - Prevalent Synergy and Antagonism Among Antibiotics and Biocides in Pseudomonas aeruginosa N2 - Antimicrobials can exert specific physiological effects when used in combination that are different from those when applied alone. While combination effects have been extensively mapped for antibiotic-antibiotic combinations, the combination effects of antibiotics with antimicrobials used as biocides or antiseptics have not been systematically investigated. Here, we investigated the effects of combinations of antibiotics (meropenem, gentamicin, and ciprofloxacin) and substances used as biocides or antiseptics [octenidine, benzalkonium chloride, cetrimonium bromide, chlorhexidine, Povidone-iodine, silver nitrate (AgNO3), and Ag-nanoparticles] on the planktonic growth rate of Pseudomonas aeruginosa. Combination effects were investigated in growth experiments in microtiter plates at different concentrations and the Bliss interaction scores were calculated. Among the 21 screened combinations, we find prevalent combination effects with synergy occurring six times and antagonism occurring 10 times. The effects are specific to the antibiotic-biocide combination with meropenem showing a tendency for antagonism with biocides (6 of 7), while gentamicin has a tendency for synergy (5 of 7). In conclusion, antibiotics and biocides or antiseptics exert physiological combination effects on the pathogen P. aeruginosa. These effects have consequences for the efficacy of both types of substances and potentially for the selection of antimicrobial resistant strains in clinical applications with combined exposure (e.g., wound care and coated biomaterials). KW - Synergy KW - Antagonism KW - Suppression KW - Biocides KW - Antibiotics KW - Pseudomonas aeruginosa PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520845 DO - https://doi.org/10.3389/fmicb.2020.615618 VL - 11 SP - Article 615618 PB - Frontiers CY - Lausanne AN - OPUS4-52084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seeger, Stefan A1 - Osan, J. A1 - Czömpöly, O. A1 - Gross, A. A1 - Stosnach, H. A1 - Stabile, L. A1 - Ochsenkuehn-Petropoulou, M. A1 - Tsakanika, L. A1 - Lymperopoulou, T. A1 - Goddard, S. A1 - Fiebig, M. A1 - Gaie-Levrel, F. A1 - Kayser, Y. A1 - Beckhoff, B. T1 - Quantification of Element Mass Concentrations in Ambient Aerosols by Combination of Cascade Impactor Sampling and Mobile Total Reflection X-ray Fluorescence Spectroscopy N2 - Quantitative chemical analysis of airborne particulate matter (PM) is vital for the understanding of health effects in indoor and outdoor environments, as well as for enforcing EU air quality regulations. Typically, airborne particles are sampled over long time periods on filters, followed by lab-based analysis, e.g., with inductively coupled plasma mass spectrometry (ICP-MS). During the EURAMET EMPIR AEROMET project, cascade impactor aerosol sampling is combined for the first time with on-site total reflection X-ray fluorescence (TXRF) spectroscopy to develop a tool for quantifying particle element compositions within short time intervals and even on-site. This makes variations of aerosol chemistry observable with time resolution only a few hours and with good size resolution in the PM10 range. The study investigates the proof of principles of this methodological approach. Acrylic discs and silicon wafers are shown to be suitable impactor carriers with sufficiently smooth and clean surfaces, and a non-destructive elemental mass concentration measurement with a lower limit of detection around 10 pg/m3 could be achieved. We demonstrate the traceability of field TXRF measurements to a radiometrically calibrated TXRF reference, and the results from both analytical methods correspond satisfactorily. KW - TXRF KW - Reference method KW - Cascade impactor KW - Ambient aerosols KW - Particles KW - Air quality monitoring KW - Element mass concentration KW - Size resolved chemical composition KW - Time resolved chemical composition KW - ICP-MS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521860 UR - http://www.aerometproject.com/ DO - https://doi.org/10.3390/atmos12030309 SN - 2073-4433 VL - 12 IS - 3 SP - 309 EP - 337 PB - MDPI CY - Basel, Schweiz AN - OPUS4-52186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -