TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Pietsch, Franziska A1 - Heidrich, Gabriele A1 - Ciok, Michal T1 - Physiological and evolutionary consequences of exposing Pseudomonas aeruginosa to biocide-antibiotic combinations N2 - Antimicrobials can exert specific physiological effects when used in combination that are different from those when applied alone. These effects include physiological effects (i.e. synergy, antagonism and suppression) as well as evolutionary effects on the selection of resistant strains (i.e. cross-resistance and collateral sensitivity). While combination effects have been extensively mapped for antibiotic-antibiotic combinations, the combination effects of antibiotics with antimicrobials used as biocides or antiseptics have not been systematically investigated. Here, we investigated the physiological and evolutionary consequences of combinations of antibiotics (meropenem, gentamicin and ciprofloxacin) and substances used as biocides or antiseptics (octenidine, benzalkonium chloride, cetrimonium bromide, chlorhexidine, povidone-iodine, silver) on growth and selection of Pseudomonas aeruginosa. We find prevalent physiological combination effects with synergy occurring 6 times and antagonism occurring 10 times. The effects are specific to the antibiotic-biocide combination with meropenem showing a tendency for antagonism with biocides (6 of 7), while gentamicin has a tendency for synergy (5 of 7). A particular strong antagonism is apparent for the meropenem-chlorhexidine combination, for which we conducted an in-depth study on the underlying molecular mechanism using RNASeq. Moreover, we find widespread effects of the biocide-antibiotic combinations on selection of P. aeruginosa strains resistant to the antibiotics, including cross-resistance and collateral sensitivity. In conclusion, antibiotics and biocides or antiseptics exert physiological and evolutionary combination effects on the pathogen P. aeruginosa. These effects have consequences for the efficacy of both types of substances and for the selection of antimicrobial resistant strains in clinical applications with combined exposure (e.g. wound care, coated biomaterials). T2 - ASM-FEMS World Microbe Forum CY - Online meeting DA - 20.06.2021 KW - Antimicrobial resistance KW - Antagonism KW - Biofilms PY - 2021 AN - OPUS4-53165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Near-ambient pressure XPS of hydrated Escherichia coli samples with EnviroESCA N2 - This application note presents how EnviroESCA can be used to analyze E. coli biofilms on silicon under near ambient pressure conditions in various states of hydration. Such investigations of the outer bacterial cell surface in their hydrated state are essential for studying biological interfaces at work. KW - Biofilms KW - E. coli KW - NAP-XPS PY - 2018 UR - http://www.enviroai.com/uploads/1/0/2/8/102861712/nap_xps_of_escherichia_coli_samples.pdf IS - Application Note #000400 SP - 1 EP - 4 CY - Berlin, Germany AN - OPUS4-45720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin A1 - Brown, J. A1 - Hardie, K. A1 - Unger, Wolfgang T1 - Model systems and sample preparation for surface characterisation of bacteria and biofilms by near-ambient pressure XPS N2 - Bacterial samples are typically freeze dried or cryo-prepared prior to XPS analysis to allow for measurements in ultra-high vacuum (UHV). The sample environment in the near-ambient pressure (NAP) XPS instrument EnviroESCA allows for measurements in up to 15 mbar water vapor, thus, sample preparation is no longer restricted to UHV-compatible techniques. For instance, biofilms grown in medium can be transferred directly from the medium to the measurements chamber, maintaining a humid environment throughout the measurements. Considering the complexity of bacterial samples, sample preparation must be carefully considered in order to obtain meaningful and reproducible results. In this talk, various strategies for sample preparation of bacteria and biofilms for NAP-XPS measurements will be discussed. Model systems of planktonic bacteria, artificial biofilms resembling the exopolysaccharide matrix and biofilms have been characterised in various conditions. The stability and homogeneity of the samples was assessed by monitoring the C1s core level peak at different sample locations. The quality of the XPS-spectra is also influenced by the gas environment, which will be exemplified by core level spectra of P. Fluorescens acquired in air, water vapor and ultra-high vacuum. T2 - 18th European conference on applications of surface and interface analysis (ECASIA) CY - Dresden, Germany DA - 15.09.2019 KW - NAP-XPS KW - Biofilms KW - Bacteria KW - E. coli KW - XPS PY - 2019 AN - OPUS4-49189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin A1 - Unger, Wolfgang T1 - Investigations of biofilms in various conditions by near-ambient pressure XPS N2 - X-ray photoelectron spectroscopy (XPS) provides elemental and chemical information from the outermost ~10 nm of the sample surface. This is in the same order of magnitude as the thickness of the outer bacterial membrane of gram-negative bacteria, as well as outer membrane molecules as exopolysaccharides and lipopolysaccharides, commonly attached to the cell surface. With the development of near-ambient pressure (NAP)-XPS, bacteria can be analysed with minimal sample preparation. EnviroESCA is a laboratory based NAP-XPS instrument, equipped with a monochromated Al Kα radiation source and a differentially pumped energy analyser connected to an exchangeable sample environment. It allows for measurements in various gas-atmospheres, including water vapor, which makes it possible to characterise bacteria and other biological samples close to their natural, hydrated state. Artificial model-biofilms of exopolysaccharides, planktonic Pseudomonas Fluorescens and biofilms of Escherichia Coli have been characterised in hydrated and dried state. High-resolution XPS-spectra from carbon, oxygen, nitrogen and phosphorous can be assigned to carbohydrates, lipids and proteins in general agreement with literature. Especially the carbon 1s peak is of interest. A series of measurements of an E. coli biofilm from 11 mbar in humid environment to 1 mbar air reveal changes in the C1s peak, which suggests that the bacterial surface undergo substantial Change. T2 - BAM PhD-retreat CY - Warnemünde, Germany DA - 28.09.2018 KW - Biofilms KW - E. coli KW - NAP-XPS PY - 2018 AN - OPUS4-46132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin A1 - Defedov, A. A1 - Wöll, C. A1 - Unger, Wolfgang T1 - Exploring the capabilities of NAP-XPS: Application to metal-organic frameworks, nanoparticles and biofilms N2 - Near-ambient pressure XPS makes it possible to characterise samples not compatible to ultra-high vacuum, and enables the study of liquid-solid, gas-liquid and gas-solid interfaces. NAP-XPS meas-urements of biofilms, suspended nanoparticles and metal-organic frameworks were performed with EnviroESCA developed by SPECS. An interesting application is surface characterisation of biofilms, which are bacterial communities embedded in a self-produced polysaccharide matrix. Various model systems ranging from pure polysaccharides of alginate to biofilms harvested directly from the growth medium have been char-acterised in humid conditions[1]. NAP-XPS also makes it possible to characterise nanoparticles in solution. Silver nanoparticles in aqueous solution were characterised and the Ag 3d-spectrum compared to spectra obtained of dried nanoparticles in UHV-conditions[2]. The binding energy of the Ag 3d-core level peak was shifted by 0,6 eV towards higher binding energy for suspended nanoparticles compared to the dried sample measured in UHV. This can be assigned to a change in surface potential at the water-nanoparticle interface. Metal-organic frameworks (MOFs) are suitable materials for gas storage of small molecules due to their nanoporous, crystalline structure. However, instability in humidity remains an issue for many types of MOFs. XPS-measurements of the MOF-structure HKUST-1 were performed in various NAP-conditions to assess the stability of the sample and its interaction with the gas molecules as water, methanol and pyridine. T2 - 5th AP-XPS Workshop CY - Berlin, Germany DA - 11.12.18 KW - Biofilms KW - E. coli KW - NAP-XPS KW - Metal organic frameworks KW - Nanoparticles PY - 2018 AN - OPUS4-47060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin A1 - Unger, Wolfgang T1 - Depth-dependent analysis of model biofilms by combining laboratory- and synchrotron-based X-ray photoelectron spectroscopy N2 - Synchrotron XPS in the soft-X-ray regime is suitable for the detection of light elements commonly found in biological samples. Various model systems of biofilms have been developed and characterised at synchrotron- and lab-based facilities. By obtaining the chemical composition at various information depths, the vertical distribution of iodine in an artificial biofilm have been determined. T2 - Tenth Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - Biofilms KW - HAXPES KW - XPS KW - Iodine KW - Synchrotron-XPS PY - 2018 AN - OPUS4-46929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Breitenbach, Romy A1 - Gerrits, Ruben A1 - Dementyeva, Polina A1 - Knabe, Nicole A1 - Schumacher, Julia A1 - Feldmann, Ines A1 - Radnik, Jörg A1 - Ryo, M. A1 - Gorbushina, Anna T1 - Data for "The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering" N2 - Data for the publication "The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering" (https://doi.org/10.1038/s41529-022-00253-1). It includes: - The Summary of the EPS concentration, EPS sugar components and EPS linkages. - The Summary of the XPS analysis of freeze-dried biofilm samples of all strains. - The Summary of the pH, Mg, SI and Fe concentration, biomass and olivine dissolution rate for each time point of all dissolution experiments. KW - Biofilms PY - 2022 DO - https://doi.org/10.26272/opus4-54901 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-54901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocides As Drivers For Antimicrobial Resistance Evolution In The Environment N2 - Antimicrobial resistance (AMR) is a global health problem with the environment being an important compartment for the evolution, selection and transmission of AMR. These processes are impacted by pollution with antibiotics. However, biocides used as disinfectants and material preservatives are major pollutants by far excceding the market for antibiotics in terms of mass. Our work shows that biocides have the potential to affect evolutionary processes towards AMR by increasing the rates of de-novo mutation and conjugation. These effects depend on the species and biocidal substance. Importantly, chlorhexidine and quaternary ammonium compounds (QACs) affect rates of mutation and conjugation at environmentally relevant concentrations in E. coli. Moreover, our results show a connection between the RpoS-mediated general stress and the RecA-linked SOS response with increased rates of mutation and conjugation, but not for all biocides. Furthermore, our work highlights the potential of biocides to contribute to selection and transmission of AMR. We show that the application of biocides, especially QAC disinfectants, leads to the rapid evolution of tolerance (i.e. increased survival) in adaptive laboratory evolution (ALE) experiments. The evolved tolerant strains have a selective advantage in the presence of environmentally-relevant concentrations of antibiotics, which could lead to the stabilization of biocide tolerance in environments where biocides and antibiotics co-occur (e.g. wastewater, animal stables). ALE experiments with biocide tolerant strains indicate a decreased evolvability of resistance to antibiotics. Taken together, our work shows the importance of assessing the contribution of biocides on evolution, selection and transmission of AMR in the environment. T2 - 6th Environmental Dimension of Antibiotic Resistance (EDAR6) CY - Gothenburg, Sweden DA - 22.09.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Biofilms KW - Biocides KW - Risk assessment PY - 2022 AN - OPUS4-56262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - BIOCIDE N2 - This presentation gives an overview about the BIOCIDE project performed with the Aquatic Pollutants joint call. T2 - Aquatic Pollutants TransNet workshop CY - Online meeting DA - 09.11.2022 KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides KW - Risk assessment KW - Wastewater PY - 2022 AN - OPUS4-56265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -