TY - CONF A1 - Steger, Simon A1 - Hahn, Oliver T1 - Development of a methodical approach for in-situ analysis of modern reverse paintings on glass N2 - The technique of painting on the reverse side of glass was rediscovered by artists in the early 20th century and gained great popularity, especially in Germany. In contrast to other paint techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession starting with the foremost paint layer and ending with the primer (backmost layer). The paintings are viewed in reflected light, thus revealing an impressive gloss, luminosity and depth of colour. Scientific investigation of the material provides important information for appropriate conservation concepts. Transport of the precious and fragile objects to the lab is often not feasible. Therefore, in-situ, non-invasive analysis is necessary to analyse colorants and binders. However, some analytical problems need to be considered: due to the reverse paint stratigraphy in reverse paintings on glass, the measured layer is always the backmost one. The analytical possibilities are extremely reduced, when the back is covered by a metal foil (or by paper, carton etc.). However, measurements through the glass (using Raman and VIS) can still yield information on the colourants of the front layer. When the paint layer is accessible, we start our procedure using X-ray fluorescence (Tracer III-SD, Bruker AXS Microanalysis GmbH, 40 kV, 15 μA) and VIS reflectance spectroscopy (SPM 100, Gretag-Imaging AG). Both techniques provide first information on the inorganic colourants. Raman measurements (i-Raman®Plus, Bwtek inc., 785 nm, 50× objective, resolution 4 cm-1) are then carried out to clarify uncertain XRF measurements and to identify synthetic organic pigments (SOP). Diffuse Reflection-Infrared-Fourier-Transform Spectroscopy (DRIFTS; ExoScan, Agilent GmbH, 4000–650 cm-1, 500 scans, spectral resolution 4 cm-1) is used for the classification of the binders. Moreover, it may help to identify SOP, when fluorescence dominates the Raman signal. This analytical sequence yields the best results, when time is the limiting factor. We present two in-situ studies of the paintings “Kreuzabnahme” (1914-15) by Carlo Mense and “Stadt am Morgen” (1921) by Walter Dexel. The painting “Kreuzabnahme” is an outstanding piece in Mense’s ɶuvre, because the glass plate was painted on both sides (Fig. 1). The results of the back-side show mainly inorganic pigments: basic lead white, talc, red and brown ochre, cinnabar, chrome yellow, viridian, ultramarine blue, Prussian blue and bone black. The classification of binding media using DRIFTS yields positive results for drying oil. Acrylic resin could be identified in two areas, resulting from a previous restauration treatment. For the front side painting, Mense used basic lead white, cinnabar, chrome yellow and umbra as pigments and oil as binder. Measurements of the abstract painting “Stadt am Morgen” by Walter Dexel show zinc white, basic lead white, chalk, cinnabar, red lead, strontium yellow, cadmium yellow, cobalt blue, Prussian blue, ultramarine blue, brown ochre and bone black as pigments. Moreover, synthetic alizarin (PR83) was identified as dark red colorant. The results of DRIFTS classify oil as binding media. We conclude that, the use of complementary spectroscopic methods yields the best results for in-situ analysis of reverse paintings on glass. T2 - 3rd International Conference on Innovation in Art Research and Technology CY - Parma, Italy DA - 26.03.2018 KW - Modern painting KW - Non invasive analysis KW - Raman spectroscopy PY - 2018 AN - OPUS4-44780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Hahn, Oliver T1 - In-situ Raman spectroscopic study of pigments used in modern reverse paintings on glass N2 - The technique of painting on the reverse side of glass was rediscovered by artists in the early 20th century. The artist group “Der Blaue Reiter” around Wassily Kandinsky and Franz Marc got in touch with this technique in 1908 and 1909. In the following years it gained great popularity, especially in Germany. Nevertheless, the technique has not received its due appreciation in art history. It was considered as stained glass. However, the paint layers are applied cold, hence this artistic technique doesn’t involve a firing step. Our multidisciplinary project investigates the art historic backgrounds, the painting techniques and materials of modern reverse paintings on glass. More than 1000 paintings from ~100 artists were discovered in the framework of our project. A selection of 60 paintings could be analyzed using non-invasive, in-situ methods such as Raman and VIS spectroscopy, Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) and X-ray fluorescence (XRF). In this paper we want to point out the key role of Raman spectroscopy for our research. It offers the unique opportunity to measure paint layers from both sides. (front = through the glass; reverse = directly on the paint layer). T2 - XIII International GeoRaman Conference CY - Catania, Italy DA - 10.06.2018 KW - Raman spectroscopy KW - Reverse painting on glass KW - Non-invasive analysis PY - 2018 AN - OPUS4-45400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Hahn, Oliver A1 - Stege, H. A1 - Oesterle, D. A1 - Bretz, S. A1 - Geiger, G. T1 - Disclosing a new aspect in modern European art: multidisciplinary analysis of modern reverse paintings on glass (1905-1955) N2 - The technique of painting on the reverse side of a glass panel was rediscovered by German artists at the beginning of the 20th century. They appreciated the impressive gloss, luminosity, and depth of colours in this genre. Compared to stained glass, the distinctive properties of this technique are: (1) the paint is applied “cold”, hence, it doesn’t involve a firing step, (2) reverse paintings on glass are framed and always viewed in reflected light and (3) the reverse paint stratigraphy is different from canvas paintings, starting with the front most layer and ending with the backing layer. In 1908 several artists, including Gabriele Münter, Wassily Kandinsky, Heinrich Campendonk, August Macke and Franz Marc of the “Der Blaue Reiter” (the Blue Rider) collective took an interest in this technique and started to share their interest with other colleagues in Europe. Our pioneering project is tracing this transfer of knowledge by a multidisciplinary approach in terms of art history, paint technology and material science. More than 100 artists and >1000 reverse paintings on glass were identified during the project. This high number of objects clearly points out that this technique was by far more important for modern art than previously assumed. In-situ, non-invasive measurements (XRF, Raman, VIS, DRIFTS) on a well-considered selection of 67 paintings reveal the broad palette of colorants ranging from traditional to experimental. Special attention is paid to the impact of synthetic organic pigments (SOP) in artists palette. Demonstrative examples by W. Kandinsky, L. G. Buchheim and F. Jespers are used to discuss analytical challenges and highlights. T2 - Art & Archaeology 2018 CY - Jerusalem, Israel DA - 09.12.2018 KW - Reverse glass painting KW - Spectroscopy KW - In-situ analysis PY - 2018 AN - OPUS4-47042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Stege, Heike A1 - Hahn, Oliver T1 - In-situ spectroscopic analysis of modern reverse paintings on glass (1905-1955) N2 - The technique of painting on the reverse side of a glass panel was rediscovered by German artists at the beginning of the 20th century. In contrast to other paint techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession starting with the foremost paint layer and ending with the primer (backmost layer). The paintings are viewed in reflected light, thus revealing an impressive gloss, luminosity and depth of colour. The artist group “Der Blaue Reiter” (the Blue Rider) around W. Kandinsky and F. Marc got in touch with this technique in the summers of 1908 and 1909 and spread their knowledge in different regions. Our pioneering project is tracing this transfer of knowledge by a multidisciplinary approach in terms of art history, painting technology and material science. More than 100 artists and >1000 reverse paintings on glass (1905-1955) were identified during the project. This numbers clearly point out that this technique was by far more important for modern art than previously assumed. In-situ, non-invasive measurements (XRF, Raman, VIS, DRIFTS) on a well-considered selection of 67 paintings reveal the broad palette of colorants ranging from traditional to experimental materials. Special attention is paid on artists who are strongly connected to Berlin. Demonstrative examples by W. Dexel, G. Muche and L. Hildebrandt are used to discuss analytical challenges and highlights. T2 - Young Researchers in Archaeometry (YRA) 2nd Workshop CY - Berlin, Germany DA - 23.09.2018 KW - Raman spectroscopy KW - DRIFTS KW - Reverse glass painting PY - 2018 AN - OPUS4-46066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabin, Ira A1 - Kohl, Anka A1 - Bicchieri, M. A1 - Sodo, A. A1 - Piantanida, G. T1 - New results in Dead Sea Scrolls non-destructive characterisation. Evidence of different parchment manufacture in the fragments fromReed collection N2 - This work presents the non-destructive spectroscopic characterisation of original Dead Sea Scrolls (DSS)parchment fragments from Ronald Reed collection. The fragments are of paramount importance becausethey have never been subjected to any treatment of preservation and restoration, this allows to investi-gate the manufacturing method of real original Jewish parchments. The manufacture of “sacred” Jewishparchments, in fact, is traditionally supposed to use a superficial tannin treatment. To study the DSS frag-ments, it was necessary both to analyse mock-up samples, especially manufactured in order to reproduceancient Oriental Jewish ritual parchments, and to compare the results with those obtained in the analysisof modern and ancient Western Jewish ritual parchments, in order to test the effectiveness of the selectedspectroscopic techniques. Traditionally, the main difference between Oriental and Western traditionalparchment preparation consisted in the dehairing method: enzymatic for Oriental and lime-based forWestern. Moreover, a finishing treatment with tannin was supposed to be applied on ritual Jewish parch-ments. The need of reference samples derives from the knowledge that each parchment preparation,treatment and degradation can induce structural modifications that affect the spectral features. FourierTransform Infrared Spectroscopy by Attenuated Total Reflection (ATR-FTIR), FT-Raman and m-Ramanwere used in this study. The experimental results allowed us to recognise, with different sensitivity, thepresence of tannin by using m-Raman and IR spectroscopies and to prove that not all the archaeologicalsamples were manufactured in the same way with vegetal extracts. Many salts (tschermigite, dolomite,calcite, gypsum and iron carbonate) were found on the surface of DSS fragments. They can derive fromthe degradation processes and storage environment before the discovery or from the manufacture. More-over, the different sensitivities and instrumental characteristics of the used techniques permitted us toestablish an analytical protocol, useful for further studies of similar materials. KW - ATR-FTIR KW - Tannins KW - Dead Sea Scrolls KW - Raman KW - FT-Raman PY - 2018 U6 - https://doi.org/10.1016/j.culher.2018.01.014 VL - 32 SP - 22 EP - 29 PB - Elsevier Masson SAS AN - OPUS4-49533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Noeller, Renate A1 - Danielewski, Angelika A1 - Giel, Robert A1 - Hahn, Oliver A1 - Overgaauw, Everadus T1 - Analysis of the codices `Fragmens de Peinture hiéroglyphique Aztèques, deposés à la Bibliotheque royale de Berlin´ represented on plate 36 in `Vues des Cordillères et Monuments des Peuples Indigènes de l`Amerique, Voyage de Humboldt et Bonpland´ N2 - The mayor part of the Berlin collection `Manuscripta Americana´ consists of documents compiled by Alexander von Humboldt. The diversity of the written fragments and their shape presume few accordance concerning purpose, place or time of production. Even before the papers came to Berlin, manuscripts were copied, divided and collected by famous scholars also in Mexico. Back in Europe, Humboldt visited further collections and published the detected hieroglyphic writings altogether with cultural objects and landscapes in the book `Vues des Cordillères et Monuments des Peuples Indigènes de l`Amerique, voyage de Humboldt et Bonpland´, labelled corresponding to the cultural background. By scientific and culture historical analyses, the Humboldt codices are revised and related to each other and others. In especial, the compilation of fragments shown on plate 36 in the book is looked at more closely. Whereas most of the plates represent only one sheet of painted amate paper, here segments with details of seven fragments are put together. It is tried to comprehend why these pieces are on one plate. To find out a common feature of the documents, their content and represented form are compared. A correlation between some pieces is obvious and thus is also expected in the manufacture of the codices, in the kind of material used. For this the inks and colors are determined by scientific analysis including XRF-, Raman-, FTIR- and VIS- spectroscopy. Special material is detected and related to results of former analysis of codices written during the colonial period of America. Herewith a clear cultural assignment of the manuscripts is performed. A relation of the fragments represented on plate 36 among each other and to other codices of the collection Manuscripta Americana in Berlin is discussed. Also, if the manuscripts are unique `originals´ or represent fragments of documents, whose corresponding pieces maybe found- in the best case- incorporated in other collections. We detected, that at least two of them can be put into relation to similar manuscripts deposited in Mexico. Further material analysis should clarify, if the corresponding pieces are identical- from one document, or if one of them is a copy. Herewith an approximation to authenticity features and history is issued. T2 - 42nd International Symposium on Archaeometry ISA 2018 CY - Merida, Yucatan, Mexico DA - 20.05.2018 KW - Vues des Cordillères KW - VIS KW - Humboldt Codices KW - XRF KW - FTIR KW - Raman PY - 2018 AN - OPUS4-47554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehring, Grzegorz A1 - Targowski, P. A1 - Rabin, Ira T1 - Can an inkwell leak into ink? N2 - X-ray fluorescence analysis, due to its non-destructive nature and ist suitability to work with historic objects in situ, quickly became one of the most important methods for the evaluation of iron-gall ink. The main advantage of this qualitative and semi-quantitative method is that it makes it easy to differentiate between inks, based on the assumption that the differences result from the manufacture of the ink. This work explores the question whether the ink ‘fingerprint’ results strictly from the elemental composition of the basic ink ingredients even if it is stored in vessels made of metals or metal alloys. In addition, we tested and compared the performance of three different XRF spectrometers. We prepared various lab-grade inks according to historical ink recipes and measured the metal content of the ink deposited on sized cotton Linters paper with three types of XRF spectrometers: a simple hand-held device with an interaction spot of 4 mm and two devices equipped with poly-capillary Xray optics for line scanning and imaging. Since the exact elemental mass composition of the non-aged ink samples was known, we were able to evaluate the accuracy of the research procedure. Lab-grade inks were then aged in the metal jars imitating inkwells. The aging of the inks in the metal containers resulted in the significant change of the primary inks fingerprint as opposed to that of the control inks stored in glass containers. This effect was independently confirmed by the measurements conducted with every instrument we used. We will present a brief comparison of the results 43 achieved when using different spectrometers and a possible hypothesis explaining the processes that occurred. T2 - Konferenz -7th Meeting X-ray and other techniques in investigations of the objects of cultural heritage CY - Krakow, Poland DA - 17.05.2018 KW - Iron-gall ink KW - XRF KW - Inkwells KW - Ink composition KW - Performance comparison PY - 2018 AN - OPUS4-49157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heiles, M. A1 - Rabin, Ira A1 - Hahn, Oliver ED - Friedrich, M. ED - Quenzer, J. ED - Wandrey, I. T1 - Palaeography and X-ray fluorescence spectroscopy: Manuscript production and censorship of the fifteenth century German manuscript Cod. germ. 1 of the Staats- und Universitätsbibliothek Hamburg N2 - The manuscript Codex germanicus 1 (Cod. germ. 1) of the Staats- und Universitätsbibliothek Hamburg is a fifteenth-century German-language manuscript. It comprises two codicological units and has an especially complex developmental history. To trace this developmental history, neglected until now in the research literature, the manuscript was investigated, for the first time not solely with classical codicological and palaeographical methods, but also with the aid of X-ray fluorescence spectroscopy, in order to determine the composition of the writing materials. These methods made it possible, first, to support and check palaeographic findings and, second, to gain information about the stratigraphy of the manuscript where palaeographic methods find their limits – in regard to short entries, rubrications, and non-alphabetical signs. KW - Archaeometry KW - Non-destructive testing KW - Inks PY - 2018 SN - 1867-9617 VL - 2018 IS - 11 SP - 109 EP - 132 PB - Universität Hamburg CY - Hamburg AN - OPUS4-45818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghigo, Tea A1 - Bonnerot, Olivier A1 - Buzi, P. A1 - Krutzsch, M. A1 - Hahn, Oliver A1 - Rabin, Ira ED - Friedrich, M. ED - Quenzer, J. ED - Wandrey, I. T1 - An Attempt at a Systematic study of inks from Coptic manuscripts N2 - It is well documented that throughout Antiquity, ancient Egyptians used mostly carbon inks as a writing material. In Late Antiquity, some metals started to be added to carbon based inks. We have records of five manuscripts from the Dead Sea Scrolls collection whose carbon inks were found to contain copper Also, lead was recently found as an additive in carbon inks on a charred fragment from Herculaneum. Furthermore, the earliest evidence of iron-gall ink was found in the Book of Proverbs (Codex Ms. Berol. orient. oct. 987) dating to the third fourth centuries ce. It has been suggested that along with carbon and iron-gall inks, there is no reason to think that purely tannin inks were not also in use in Egypt. However, so far, we just have evidence of a copper-tannin ink identified in a number of documents from Egypt in the first third centuries bce. In an attempt to fill this gap in this extremely fragmented scenario during our studies of the socio-geographic history of inks, we arrived at the conclusion that the continuous production of Coptic manuscripts from Late Antiquity to the Middle Ages offers a unique opportunity for the historical study of inks across a large geographic area. KW - Archaeometry KW - Non-destructive testing KW - Inks PY - 2018 SN - 1867-9617 VL - 2018 IS - 11 SP - 157 EP - 163 PB - Universität Hamburg CY - Hamburg AN - OPUS4-45817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghigo, Tea A1 - Buzi, Paola A1 - Rabin, Ira T1 - New approaches to the analysis of ancient inks N2 - 4.5 protocol for ink analysis and new possible fronteers: SERS and ASAP-MS. T2 - Art and Archaeology conference - Jerusalem CY - Jerusalem, Israel DA - 10.12.2018 KW - ASAP-MS KW - Ancient INKS KW - NIR reflectography KW - XRF KW - SERS PY - 2018 AN - OPUS4-47080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -