TY - CONF A1 - Kalbe, Ute T1 - Tools for the characterization of secondary raw materials - status of leaching test application N2 - Leaching tests are used as tools for the assessment of environmental compatibility of granular waste materials with potential for reuse. The presentation gives an overview on available leaching tests, their field of application and relation to legislation. Furthermore robustness testing to elaborate optimized test conditions as well as performance characteristics from validation studies by BAM are addressed. T2 - Travelling Conference CY - Perth, Australia DA - 06.02.2018 KW - Leaching KW - Risk assessment KW - Robustness studies PY - 2018 AN - OPUS4-44723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kalbe, Ute T1 - Tools for the characterization of secondary raw materials - status of leaching test application N2 - Leaching tests are used as tools for the assessment of environmental compatibility of granular waste materials with potential for reuse. The presentation gives an overview on available leaching tests, their field of application and relation to legislation. Furthermore robustness testing to elaborate optimized test conditions as well as performance characteristics from validation studies by BAM are addressed. T2 - Travelling Conference CY - Ho-Chi-Ming City, Vietnam DA - 01.02.2018 KW - Leaching KW - Risk assessment KW - Robustness studies PY - 2018 AN - OPUS4-44724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Hahn, Oliver T1 - Development of a methodical approach for in-situ analysis of modern reverse paintings on glass N2 - The technique of painting on the reverse side of glass was rediscovered by artists in the early 20th century and gained great popularity, especially in Germany. In contrast to other paint techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession starting with the foremost paint layer and ending with the primer (backmost layer). The paintings are viewed in reflected light, thus revealing an impressive gloss, luminosity and depth of colour. Scientific investigation of the material provides important information for appropriate conservation concepts. Transport of the precious and fragile objects to the lab is often not feasible. Therefore, in-situ, non-invasive analysis is necessary to analyse colorants and binders. However, some analytical problems need to be considered: due to the reverse paint stratigraphy in reverse paintings on glass, the measured layer is always the backmost one. The analytical possibilities are extremely reduced, when the back is covered by a metal foil (or by paper, carton etc.). However, measurements through the glass (using Raman and VIS) can still yield information on the colourants of the front layer. When the paint layer is accessible, we start our procedure using X-ray fluorescence (Tracer III-SD, Bruker AXS Microanalysis GmbH, 40 kV, 15 μA) and VIS reflectance spectroscopy (SPM 100, Gretag-Imaging AG). Both techniques provide first information on the inorganic colourants. Raman measurements (i-Raman®Plus, Bwtek inc., 785 nm, 50× objective, resolution 4 cm-1) are then carried out to clarify uncertain XRF measurements and to identify synthetic organic pigments (SOP). Diffuse Reflection-Infrared-Fourier-Transform Spectroscopy (DRIFTS; ExoScan, Agilent GmbH, 4000–650 cm-1, 500 scans, spectral resolution 4 cm-1) is used for the classification of the binders. Moreover, it may help to identify SOP, when fluorescence dominates the Raman signal. This analytical sequence yields the best results, when time is the limiting factor. We present two in-situ studies of the paintings “Kreuzabnahme” (1914-15) by Carlo Mense and “Stadt am Morgen” (1921) by Walter Dexel. The painting “Kreuzabnahme” is an outstanding piece in Mense’s ɶuvre, because the glass plate was painted on both sides (Fig. 1). The results of the back-side show mainly inorganic pigments: basic lead white, talc, red and brown ochre, cinnabar, chrome yellow, viridian, ultramarine blue, Prussian blue and bone black. The classification of binding media using DRIFTS yields positive results for drying oil. Acrylic resin could be identified in two areas, resulting from a previous restauration treatment. For the front side painting, Mense used basic lead white, cinnabar, chrome yellow and umbra as pigments and oil as binder. Measurements of the abstract painting “Stadt am Morgen” by Walter Dexel show zinc white, basic lead white, chalk, cinnabar, red lead, strontium yellow, cadmium yellow, cobalt blue, Prussian blue, ultramarine blue, brown ochre and bone black as pigments. Moreover, synthetic alizarin (PR83) was identified as dark red colorant. The results of DRIFTS classify oil as binding media. We conclude that, the use of complementary spectroscopic methods yields the best results for in-situ analysis of reverse paintings on glass. T2 - 3rd International Conference on Innovation in Art Research and Technology CY - Parma, Italy DA - 26.03.2018 KW - Modern painting KW - Non invasive analysis KW - Raman spectroscopy PY - 2018 AN - OPUS4-44780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maul, Ronald A1 - Borzekowski, Antje A1 - Drewitz, Tatjana A1 - Keller, Julia A1 - Pfeifer, Dietmar A1 - Kunte, Hans-Jörg A1 - Koch, Matthias A1 - Rohn, S. T1 - Biosynthesis of zearalenone conjugates by fungi N2 - Zearalenone (ZEN) and its sulfate and glucoside conjugates have been detected in (a broad variety of) food and feed commodities1. Both conjugated derivatives are formed as part of fungal or plant secondary metabolism and thus, belong to the group of modified mycotoxins2. After consumption of contaminated foodstuff, the conjugates can be hydrolyzed by human intestinal microbiota leading to liberation of ZEN that implies an underestimation of the true ZEN exposure. In order to include ZEN conjugates in routine analysis, as well as for toxicological investigation reliable standards are needed. The objective of the present study was to develop a simple and economic method for biosynthesis of ZEN conjugates. Preceding experiments on the biotransformation of ZEN by Rhizopus and Aspergillus species showed a mixed metabolite formation3. Therefore, these known ZEN conjugating fungal strains were screened for their potential to selectively synthesize the ZEN derivatives ZEN-14-sulfate (Z14S), ZEN-14-glucoside (Z14G) and ZEN-16-glucoside (Z16G). The screening was conducted by adding ZEN to liquid fungal cultures. Cultivation conditions and ZEN incubation time were varied. All media samples were analyzed for metabolite formation by HPLC-MS/MS. Z14S was exclusively formed by A. oryzae. Under optimized conditions a specific biosynthesis of Z14G by R. oryzae and Z16G by R. oligosporus was achieved. After liquid-liquid-extraction and preparative chromatographic cleanup 1H-NMR purities of ≥ 73% for Z14S, ≥ 82% for Z14G and ≥ 50% for Z16G were obtained. In addition, a consecutive biosynthesis was developed by first using Fusarium graminearum for ZEN biosynthesis on rice based liquid medium. After inactivation of Fusarium the subsequent conjugation reaction was conducted utilizing Aspergillus and Rhizopus species under the various optimized conditions. In this study an easy and cost-efficient biosynthesis for Z14S, Z14G and Z16G was developed. The developed biosynthesis could be also used for other metabolites like ZEL conjugates. Our results of the in vitro screening indicate also the formation of a ZEL-glucoside and α ZEL-sulfate as major metabolites by R. oryzae. In sum, under optimized cultivation conditions fungi can be easily utilized for a targeted and stereospecific synthesis of ZEN conjugates. T2 - 10th World Mycotoxin Forum Conference CY - Amsterdam, The Netherlands DA - 12.03.2018 KW - Mycotoxins KW - Food safety KW - Analytical standards PY - 2018 AN - OPUS4-44547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Phenotypic diversity in microbial metabolism and antimicrobial resistance N2 - Most microorganisms live in environments where nutrients are limited and fluctuate over time. Cells respond to nutrient fluctuations by sensing and adapting their physiological state. Recent studies suggest phenotypic heterogeneity in isogenic populations as an alternative strategy in fluctuating environments, where a subpopulation of cells express a function that allows growth under conditions that might arise in the future. It is unknown how environmental factors such as nutrient limitation shape phenotypic heterogeneity in metabolism and whether this allows cells to respond to nutrient fluctuations. Here, we show that substrate limitation increases phenotypic heterogeneity in metabolism, and this heterogeneity allows cells to cope with substrate fluctuations. We subjected the N2-fixing bacterium Klebsiella oxytoca to different levels of substrate limitation and substrate shifts, and obtained time-resolved single-cell measurements of metabolic activities using nanometre-scale secondary ion mass spectrometry (NanoSIMS). We found that the level of NH4+ limitation shapes phenotypic heterogeneity in N2 fixation. In turn, the N2 fixation rate of single cells during NH4+ limitation correlates positively with their growth rate after a shift to NH4+ depletion, experimentally demonstrating the benefit of heterogeneity. The results indicate that phenotypic heterogeneity is a general solution to two important ecological challenges - nutrient limitation and fluctuations - that many microorganisms face. Currently, we use NanoSIMS to develop a new approach that defines functionally-relevant, phenotypic biodiversity in microbial systems. In the last part of my presentation, I will highlight why the concept of phenotypic diversity is relevant for the understanding of antimicrobial resistance. T2 - Berlin Seminar for Resistance Research at FU Berlin Veterinary Medicine CY - Berlin, Germany DA - 01.03.2018 KW - Antimicrobial Resistance KW - Metabolism KW - Phenotypic diversity PY - 2018 AN - OPUS4-44597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Surface characterisation of biofilms by nearambient pressure X-ray photoelectron spectroscopy N2 - The XPS information depth of approximately 10 nm is in the same size range as the outer membrane of the gram-negative bacteria, which makes XPS a suitable tool for determining the elemental composition of the bacterial surface and monitor changes caused by outer stress like dehydration or exposure to antimicrobials. However, bacteria are inherently in a hydrated state, and therefore only compatible to ultra-high vacuum after extensive sample preparation, which may degrade the sample constituents. This issue is addressed by the development of near-ambient pressure (NAP)-XPS, which enables bacteria and biofilms to be characterised in their native wet state. Artificial biofilms, bacteria and biofilms of Escherichia coli have been characterised with the laboratory NAP-XPS instrument EnviroESCA from SPECS GmbH, at pressures ranging from high vacuum to 12 mbar, and in both humid and dry environment. By studying biological samples in their native wet state, new insight about composition and transport of drugs through cell membranes and the extracellular polymeric substance (EPS) of biofilms can be obtained. T2 - Royal Society of Chemistry Twitter Conference CY - Worldwide (online conference) DA - 06.03.2018 KW - Biofilms KW - E. coli KW - Alginate KW - NAP-XPS PY - 2018 AN - OPUS4-44498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Surface characterisation of bacteria and biofilms by NAP-XPS N2 - The XPS information depth of approximately 10 nm is in the same size range as the outer membrane of the gram-negative bacteria, which makes XPS a suitable tool for determining the elemental composition of the bacterial surface and monitor changes caused by outer stress like dehydration or exposure to antimicrobials. However, bacteria are inherently in a hydrated state, and therefore only compatible to ultra-high vacuum after extensive sample preparation, which may degrade the sample constituents. This issue is addressed by the development of near-ambient pressure (NAP)-XPS, which enables bacteria and biofilms to be characterised in their native wet state. Artificial biofilms, bacteria and biofilms of Escherichia coli have been characterised with the laboratory NAP-XPS instrument EnviroESCA from SPECS GmbH, at pressures ranging from high vacuum to 12 mbar, and in both humid and dry environment. By studying biological samples in their native wet state, new insight about composition and transport of drugs through cell membranes and the extracellular polymeric substance (EPS) of biofilms can be obtained. In this contribution, the latest progress on biofilm characterisation by NAP-XPS will be presented, and measurement capabilities and limitations will be discussed. T2 - Die Frühjahrstagung der Deutsche Physikalische Gesellschaft CY - Berlin, Germany DA - 12.03.2018 KW - Biofilms KW - E. coli KW - Alginate KW - NAP-XPS PY - 2018 AN - OPUS4-44500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Dietrich, P. A1 - Beblo-Vranesevic, K. A1 - Kjærvik, Marit A1 - Unger, Wolfgang A1 - Schwibbert, Karin A1 - Hardie, K. A1 - Brown, J. T1 - XPS surface analysis of bacterial samples N2 - This application note presents how EnviroESCA can be used to analyze bacterial samples under near ambient pressure conditions in various states of hydration using different levels of humidity. Such investigations of bacterial cell wall surfaces in their hydrated state are essential for studying biological interfaces at work. The use of innovative near-ambient pressure (NAP-)XPS instrumentation allows the detailed analysis of irregularly-surfaced biofilms. NAP-XPS enables the surface analysis of bacterial samples in their natural hydrated state without complex sample preparation techniques such as freeze-drying or fast-freezing, which are needed for XPS analysis in ultrahigh vacuum. KW - Near ambient pressure XPS KW - Biofilms PY - 2018 UR - http://www.enviroai.com/uploads/1/0/2/8/102861712/xps_surface_analysis_of_bacillus_subtilis_biofilms_final.pdf IS - Application Note #000399 SP - 1 EP - 5 CY - Berlin AN - OPUS4-44588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sieksmeyer, Thorben A1 - McMahon, Dino Peter A1 - He, Shulin T1 - Beyond nutrition: host-microbiota interactions drive shifts in the behavioural phenotypes of cockroaches N2 - Recent studies have shown that host-microbiota interactions can lead to dramatic changes in host phenotype especially behaviour. We investigate the causal drivers of microbe-associated shifts in host phenotype by examining how feeding behaviour is modulated by a bacterial infection in an omnivorous cockroach: Blatta orientalis. We conducted food-choice experiments after challenging hosts with the common entomopathogenic soil bacterium Pseudomonas entomophila to understand the impact of bacterial pathogens on host macronutrient preference. We find that immune challenge by this bacterium drives a sharp decline in carbohydrate intake and results in a relative increase in the ratio of protein to carbohydrate consumed. Additionally, infected cockroaches reduce their overall nutrient intake. We show for the first time that cockroach feeding behaviour is dynamically modulated by a pathogen. In contrast to studies on Spodoptera moths, this modulation does not impact any of the immune parameters we measured: it does not affect the abundance of immune related proteins in the hemolymph, hemolymph antimicrobial activity, or survival. This leads to the possibility that as long-lived omnivorous species B. orientalis may be better adapted to unpredictable variation in food availability and quality. An illness-induced anorexia-like response which is thought to assist hosts in limiting nutritional resources available to pathogens is therefore the most likely cause of the observed phenotype. Reduction of carbohydrate intake by sick individuals would be consistent with such an explanation. In another cockroach species Blatella germanica we also investigate whether in addition to pathogens, host microbiota especially gut commensals are causally responsible for shifts in host behavioural phenotype and immune competence. To address this, we conduct food-choice and immunechallenge experiments in germ-free cockroaches and naïve cockroaches. T2 - XI EUROPEAN CONGRESS OF ENTOMOLOGY CY - Neapel, Italy DA - 02.07.2018 KW - Bacterial infection KW - Feeding behaviour KW - Gut microbiota KW - Illness-induced anorexia KW - Proteomics PY - 2018 AN - OPUS4-45414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Hahn, Oliver T1 - In-situ Raman spectroscopic study of pigments used in modern reverse paintings on glass N2 - The technique of painting on the reverse side of glass was rediscovered by artists in the early 20th century. The artist group “Der Blaue Reiter” around Wassily Kandinsky and Franz Marc got in touch with this technique in 1908 and 1909. In the following years it gained great popularity, especially in Germany. Nevertheless, the technique has not received its due appreciation in art history. It was considered as stained glass. However, the paint layers are applied cold, hence this artistic technique doesn’t involve a firing step. Our multidisciplinary project investigates the art historic backgrounds, the painting techniques and materials of modern reverse paintings on glass. More than 1000 paintings from ~100 artists were discovered in the framework of our project. A selection of 60 paintings could be analyzed using non-invasive, in-situ methods such as Raman and VIS spectroscopy, Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) and X-ray fluorescence (XRF). In this paper we want to point out the key role of Raman spectroscopy for our research. It offers the unique opportunity to measure paint layers from both sides. (front = through the glass; reverse = directly on the paint layer). T2 - XIII International GeoRaman Conference CY - Catania, Italy DA - 10.06.2018 KW - Raman spectroscopy KW - Reverse painting on glass KW - Non-invasive analysis PY - 2018 AN - OPUS4-45400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -