TY - CONF A1 - Bandow, Nicole T1 - Consideration of organic contaminants and ecotoxicologal impact of recycling materials - Handling of substances without treshold values N2 - The presentation gives an overview about the use of ecotoxicity testing in assessment of waste. Especially in cases with unknown composition this kind of test are useful. Recently, the assessment of the hazard property HP 14 "ecotoxicity" for the labelling of waste was published. The labelling procedure is explained in detail. T2 - Travelling Conference CY - Ho-Chi-Ming City, Vietnam DA - 01.02.2018 KW - Ecotoxicity KW - HP14 KW - Recycling materials PY - 2018 AN - OPUS4-44455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aumont, Cedric A1 - McMahon, Dino Peter T1 - Harnessing near-chromosome level quality genomes to explore the evolution of termite immunity N2 - The phylogeny of the Blattodea boasts a wide degree of sociality spanning from solitary cockroaches to advanced ecosystem-dominating higher termite societies. The emergence of sociality in termites was associated with the acquisition of a diverse range of social structures. Previous work has found evidence for a caste-specific social defence system in termites leading to an immune system that may favour group over individual defence. While preliminary work suggests a correlation between social transitions and a reduction of immune gene family diversity, the lack of available high-quality termite genomes hampers complete knowledge of the true diversity of immune gene evolution across termite phylogeny. Here, we report on the sequencing and near-chromosome level assembly of 48 high-quality long-read-based genomes across major termite and cockroach sister-branch lineages. We investigate the diversity and evolutionary history of immune genes across genomes, focusing particular attention on correlations between immune gene evolution and transitions in sociality over termite phylogeny. T2 - Royal Entomological Society Annual Meeting - Ento23 CY - University of Exeter, Falmouth, UK DA - 05.09.2023 KW - Immune gene family KW - Termite phylogeny KW - Eusociality KW - Group defence PY - 2023 AN - OPUS4-58296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aumont, Cedric A1 - McMahon, Dino Peter T1 - Immune gene family diversity across insects and Blattodea N2 - Insecta is one of the most diverse phyla in the animal kingdom, with species living in all types of habitats encountering an even greater diversity of pathogens and parasites. Defence strategies against such harmful threats led to a variety of molecular mechanisms, ecological shifts, and genetic innovations. Gene families underlying the molecular basis of the immune responses have evolved within the boundaries given by the species ecology. Here, we explore the evolution of some emblematic immune gene families throughout the Insecta phylum shedding light on remarkable genetic events such as gene duplication or gene loss. We followed a workflow based on the Hidden Markov model to search for immune genes in 55 high-quality genomes of insects. We highlight the emergence of group defence in social species as an ecological shift that released selection pressure on immune gene families notably in Blattodea. Further, we draw attention to certain gene families and the link between their diversity and the specificities of the species’ microbiota. Overall, we report data on immune gene diversity in insects. T2 - International Conference for Blattodea Research CY - Münster, Germany DA - 03.04.2023 KW - Immune gene family KW - Genomics KW - Blattodea PY - 2023 AN - OPUS4-58298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aumont, Cedric A1 - McMahon, Dino Peter T1 - Genomic innovations underlying the evolution of termite social behaviour N2 - The phylogeny of the Blattodea boasts a wide degree of sociality spanning from solitary cockroaches to advanced ecosystem-dominating higher termite societies. The emergence of sociality in the termites was associated with the acquisition of a diverse range of social structures and differential expression of specific gene network. Previous work has found evidence for a caste-specific social defence system in termites leading to an immune system that may favour group over individual defence. While preliminary work suggests a correlation between social transitions and a reduction of immune gene family diversity, the lack of available high-quality termite genomes hampers complete knowledge of the true diversity of immune gene evolution across termite phylogeny. Here, we report on the sequencing and assembly of 50 high-quality long-read-based genomes and 180 caste- and sex-specific brain transcriptomes across major termite and cockroach sister-branch lineage. We investigate the diversity and evolutionary history of immune genes across genomes, and the potential gene networks that have evolved with the emergence of termite sociality and some aspect of immune related behaviours. T2 - Invited talk at University Paris 13 CY - Villetaneuse, France DA - 27.02.2023 KW - Immune gene family KW - Gene network KW - Eusociality KW - Termite phylogeny KW - Group defence PY - 2023 AN - OPUS4-58300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auer, G. A1 - Spanka, M. A1 - Hamann, Christopher A1 - Adam, Christian T1 - Thermal zinc extraction from steel mill dust N2 - Treatment and reusing of hazardous wastes have become significant issues of modern societies. Blast furnace sludge (BFS) and electric arc furnace dust (EAFD) are such typical wastes, because they usually contain high amounts of undesirable elements such as zinc (Zn) and lead (Pb). These elements can cause operational problems in reusing of BFS and EAFD. In this study, the Ferro Duo GmbH and the Federal Institute for Materials Research and Testing have investigated a novel approach for eliminating and/or recovering Zn and Pb from both wastes. Applied was a selective chlorination and volatilization of Zn and Pb as chlorides at temperatures between 500 °C and 1100 °C. Both product obtained, Zn and Pb in the form of ZnCl2 and PbCl2 and the purified solid mineral compound are attractive materials for further use. Hydrochloric acid and iron(II) chloride were used as chlorination agents. Exceptionally high Zn and Pb removal efficiencies of >99.5 % could be achieved with both chlorination agents, whereby iron(II) chloride exhibited better performance. KW - Blast furnace sludge KW - Chlorination KW - Electric arc furnace dust KW - Lead KW - Zinc KW - Thermochemical treatment PY - 2019 SN - 1613-2394 VL - 72 IS - 1 SP - 27 EP - 31 PB - GDMB Verlag GmbH CY - Clausthal-Zellerfeld AN - OPUS4-47288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Asbach, C. A1 - Held, A. A1 - Kiendler-Scharr, A. A1 - Scheuch, G. A1 - Schmid, H.-J. A1 - Schmitt, S. A1 - Schumacher, S. A1 - Wehner, B. A1 - Weingartner, E. A1 - Weinzierl, B. A1 - Bresch, Harald A1 - Seeger, Stefan A1 - u.a., T1 - Position paper of the Gesellschaft für Aerosolforschung on understanding the role of aerosol particles in SARS-CoV-2 infection N2 - Many studies have already shown that viruses can spread via aerosol particles. An aerosol is a mixture of air with solid or liquid particles dispersed in it. To understand the role of aerosol particles as a transmission path of SARS-CoV-2, knowledge of the different processes in an Aerosol is therefore of particular importance. With this paper, GAeF would like to contribute to a better understanding of the term “aerosol” and the relevant aerosol processes. In the context of this paper only the essential basics will be discussed. For a deeper understanding of the partly complex processes, please refer to the literature mentioned at the end of the paper. The paper summarises a large number of studies on the formation of virus-laden aerosol particles and their spread. Based on this, it can be concluded that exhaled aerosol particles may play a prominent role in the spread of viruses in the corona pandemic. Finally, this paper discusses possible measures to reduce the spread of aerosol particles. The measures discussed are based on the current public debate including ventilation, air purifiers, HVAC systems and masks. Advice is given on the correct and sensible use of these measures. An aerosol is always dynamic, as particles are newly formed, transported in or with the air, removed from the air or change in the airborne state. Aerosol particles have sizes between approx. 0.001 and several 100 micrometres (and not < 5 μm as currently defined in many publications) and spread relatively quickly with air currents, even over longer distances. Larger aerosol particles sink to the ground, depending on their size and density, while small aerosol particles can remain in the air for a very long time (see Section 3). Every person emits liquid aerosol particles of various sizes through breathing and when speaking, coughing and sneezing (see Section 4). If a person is infected with a virus, such as SARS-CoV-2, these aerosol particles can contain viruses that can be released into the air and inhaled by other people. SARS-CoV-2 has a size of 0.06 to 0.14 micrometres, but the exhaled liquid aerosol particles are larger. The liquid aerosol particles can shrink by evaporation, depending on the ambient conditions (see Section 3.3). Particle size is relevant for particle transport and particle separation. The highest risk of infection exists in closed indoor spaces, as aerosol particles can accumulate there. Here in particular, appropriate measures must be taken to reduce the concentration of aerosol particles (see Section 5). Against the background of aerosol science, the GAeF classifies the current measures to contain the pandemic as follows: • In principle, no measure can work on its own! According to the current state of knowledge, the interaction of the most varied measures is the best way to minimise the risk of infection. • Keeping distance is important, because with increasing distance, directly exhaled viruses are diluted and the probability of infection decreases. The often prescribed minimum distance can be used as a guide, but it should be increased and supplemented by other measures (see below), especially for longer meetings and also indoors with reduced air movement. • Masks help to filter some of the exhaled particles (and viruses). This reduces the concentration of exhaled particles (and viruses) in a room and thus the risk of infection. It should be noted here that the exhaled aerosol particles are relatively large due to adhering moisture and can therefore also be efficiently retained by simple masks. However, since these particles shrink with longer dwell time in the room air, simple mouth-nose masks are less efficient for self-protection. Respiratory masks are required for this purpose, which show a high degree of separation even for fine particles, e.g. of classes FFP2, N95 or KN95. These are efficient for both self-protection and protection of others unless they have an exhalation valve. Masks with an exhalation valve, on the other hand, are only for self-protection and therefore contradict the solidarity concept that fellow human beings are protected by collective mask wearing. Face shields which are used without additional masks are largely useless with regard t• aerosol particles, as the air with particles (and viruses) flows unfiltered around the shields. In everyday clinical practice, facial shields are worn in addition to masks to prevent droplet infection via the mucous membranes of the eyes. Mobile or permanently installed Plexiglas barriers are also largely ineffective against the spread of aerosols indoors. These can only prevent the smallscale spread of an aerosol in the short term, e.g. in the checkout area of a supermarket, but offer no protection in the longer term. Face shields and Plexiglas panels essentially serve as spit and splash protection against large droplets. • Outdoors, there are practically no infections caused by aerosol transmission. However, droplet infections can still occur, especially in crowds, if minimum distances are not observed and/or masks are not worn. In closed rooms, ventilation is essential to replace the exhaled air in a room with fresh air from outside. Frequent airing and cross-ventilation is just as effective as leaving the window open all the time. From an energy point of view, however, it is more efficient to ventilate the room, especially in winter. CO2 monitors can help to monitor indoor air quality. They indicate when it is necessary to ventilate and when the air in a room has been sufficiently changed during ventilation. However, they can only be used as an indicator and even if the proposed CO2 limit concentrations are met, they do not prevent direct infection by people in the immediate vicinity. • Air purifiers can make a useful contribution to reducing the concentration of particles and viruses in a room. When procuring air purifiers, care must be taken to ensure that they are adequately dimensioned for the room and application in question in order to significantly reduce the particle and virus load. The air throughput of the unit is more important than the pure efficiency of the filter. For energy and cost reasons, the use of highly efficient filters can even be counterproductive. Permanently installed ventilation systems can also be useful, provided they filter the air to reduce the particle and virus load in a room. To avoid infections, it is advisable to operate them with 100 % fresh air if possible. From the point of view of the Gesellschaft für Aerosolforschung, there is a considerable need for research, especially at the interdisciplinary borders to research fields of epidemiology, infectiology, virology, ventilation technology and fluid mechanics. The implementation of targeted studies should be made possible at short notice with special funding and research programmes. This paper was written originally in German by members of the Gesellschaft für Aerosolforschung and is supported by a large number of international aerosol experts. Both the English and German version as well as all images in the paper are available for free download at the following link: https://www.info.gaef.de/positionspapier. The “Gesellschaft für Aerosolforschung e. V.” must be named as the source, whenever an image is used. KW - COVID KW - SARS KW - GAeF KW - Aerosol KW - Corona PY - 2021 UR - https://www.info.gaef.de/_files/ugd/fab12b_d8d88393f90240cdbea63c88c09887ef.pdf DO - https://doi.org/10.5281/zenodo.4350494 SP - 1 EP - 48 PB - Association for Aerosol Research CY - Köln AN - OPUS4-53955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - An, Biwen Annie A1 - Voordouw, G. ED - An, Biwen Annie T1 - Chapter 4. Microbial Communities Involved in High Salinity Souring in Shale Oil Fields N2 - This book chapter provides an overview of the negative impacts of halophilic microorganisms in oil and gas operations. The chapter used a Canadian shale oil reservoir as an case study example to show the high souring and corrosion potential of halophilic microorganisms. KW - Corrosion KW - Halophilic KW - Microorganism KW - Microbial community modelling KW - Oil and gas reservoir KW - Shale KW - Geological formation KW - Oilfield PY - 2019 SN - 13 978-1-138-05775-3 SP - 57 EP - 69 PB - CRC Press CY - Boca Raton ET - 1. AN - OPUS4-49599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Kunte, Hans-Jörg A1 - Koerdt, Andrea ED - Eibergen, N. ED - Poulassichidis, T. T1 - Microbiologically Influenced Corrosion (MIC) by Halophilic (Salt-Loving) Nitrate and Sulfate-Reducing Microorganisms N2 - The survey of Canadian shale sites showed a dominance of halophilic microorganisms, including Halomonas (HA). Nitrate-amended incubations of the field samples under high salinity (14.6% NaCl), revealed a dominance of HA (>72%) and an accumulation of nitrite. Nitrite accumulation directly inhibited the growth of SRB, thereby decreasing their souring and corrosion risks. However, accumulated nitrite may also contribute to iron corrosion, which will be tested by using different concentrations of nitrate as an electron acceptor to HA. Different salinities are further tested on HA strains supplemented with iron coupons to determine their effects on iron corrosion rates. HA incubated with separate cultures of corrosive methanogen and SRB were tested to determine whether a positive or adverse effect will occur between them. Lastly, analyses of iron coupons will be conducted using TOF-SIMS, FIB-SEM and EDS for corrosion product characterization T2 - Corrosion 2021 CY - Online Meeting DA - 19.04.2021 KW - MIC KW - Bacteria KW - Halophile KW - Corrosion KW - Environmental condition KW - Korrosion KW - High salinity PY - 2021 UR - https://my.nace.org/PaperTrail/Authors/Submission.aspx?id=2914f145-7f8f-ea11-813a-005056a95a7c SP - Paper C2021-16284, 1 AN - OPUS4-52479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Koerdt, Andrea A1 - Özcan Sandikcioglu, Özlem A1 - Schreiber, Frank A1 - Kleinbub, Sherin T1 - The study of methanogen-induced microbiologically influenced corrosion under flow conditions N2 - Microbiologically influenced corrosion (MIC) is an expensive but unpredictable problem for the industries. The most well-known culprit for MIC is the sulfate-reducing microorganisms (SRM), such as members from the genus Desulfovibrio. It has been widely accepted that SRM can contribute significantly to MIC through the production of hydrogen sulfide (HS-) or in some cases a direct electron uptake from the metal surface. However, in a real environmental system, SRM is not exclusive and often involved with other microorganisms that may also contribute to MIC, such as methanogens. Methanogenic archaea can produce methane (CH4) using H2+CO2, formate, methylated amines or acetate. Methanogens are highly abundant in the environment and many are found in very extreme conditions, such as high temperature and high salinity. Previous researches have demonstrated that methanogens are capable of MIC, though the specific mechanisms are still under investigation. In the oil and gas industry, methanogens are not considered as the main contributor for MIC since the corrosion rates are often too low. However, the tests for methanogen-induced MIC are usually performed at static conditions, which cannot represent the system accurately. Here, we developed a novel anaerobic system to evaluate the corrosion potential of methanogens under flow conditions. We will use the Methanococcus maripaludis KA1 strain, which was isolated from a crude oil tank, as the organism of interest. A separate system for Desulfovibrio alaskensis will be established for corrosion rate comparisons. Furthermore, we will study the synergistic effects of M. maripaludis and D. alaskensis on MIC under flow. T2 - Eurocorr 2018 CY - Krakow, Poland DA - 09.09.2018 KW - Mikrobiell beeinflusste Korrosion KW - Methanogen KW - Korrosion KW - Microbiologically influenced corrosion KW - Methanogenesis KW - Flow system KW - Model PY - 2018 AN - OPUS4-46012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Koerdt, Andrea T1 - Investigating and modelling MIC using in-house developed flow system (Hi-Tension) N2 - Microbiologically influenced corrosion is a multidisciplinary research area. To develop successful mitigation strategies, expertise from the industry and research institutes are essential. In Department 4.1, we developed an innovative laboratory flow model (Hi-Tension) that allows effective monitoring of MIC under both standard and non-standard conditions. The flow model allows flexibility with material selection, flow rates, temperature and other environmental parameters changes. Furthermore, the flow model allows integration of electrochemical measurements using microsensors, providing a comprehensive view of corrosion at the biofilm level. Currently, initial results indicate corrosion in the flow model is significantly higher than that of standard laboratory set ups, i.e. static incubations, particularly for methane-producing microorganisms. T2 - Departmental Meeting with Helmotz Dresden CY - BAM, Berlin, Germany DA - 04.11.2019 KW - MIC KW - Corrosion KW - FIB/SEM KW - Corrosion products KW - Hi-Tension KW - Flow Model KW - Modelling PY - 2019 AN - OPUS4-49417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -