TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Hermann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in offshore industries, such as the oil and gas pipelines, due to the high concentrations of sulfate in the seawater. SRM act upon the metal by the reactiveness of hydrogen sulfide (HS-), and by withdrawal of the available electrons (Fe --> Fe2+ + 2e-; E° = -0.47 V) in electrical contact with the metal (EMIC). However, methanogenic archaea can also cause MIC. Because they do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of methanogens, we studied the EMIC methanogenic strains isolated from marine sediments (Methanobacterium-affiliated strain IM1) and crude oil tanks (Methanococcus maripaludis Mic1c10), in an in-house developed flow-through cell to simulate a fluctuating environment. A co-culture of M. maripaludis and D. alaskensis was also established to study the effect of syntrophic growth on metal corrosion that may occur in industrial pipelines. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr). Surface analyses of the metal showed severe pitting with high methane production. Genomic analysis of the EMIC methanogen M. maripaludis Mic1c10 will provide an insight on the mechanisms of MIC. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC. T2 - VAAM- Annual Conference 2019 of the Association for General and Applied Microbiology CY - Mainz, Germany DA - 17.03.2019 KW - HI-Tension KW - MIC KW - Methanogens KW - Corrosion KW - Sulfate reducing bacteria PY - 2019 AN - OPUS4-47739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Themenfeld Projekt MIC Mikrobiell beeinflusste Korrosion N2 - Mikrobiell beeinflusste Korrosion (MIC) ist ein Themenfeldprojekt innerhalb der BAM. Das Spektrum der Materialien und der Organismen ist ernorm. In dem Themenfeldprojekt MIC wurden ausgewählte Bereiche tiefergehend untersucht. In der Präsentation werden die Hauptschwerpunkte dargestellt. T2 - Beirat Material CY - Berlin, Germany DA - 03.04.2019 KW - MIC KW - Kraftstoffabbau KW - Kraftstoffbehälter KW - Gesteinskorrosion KW - Metallkorrosion KW - HI-Tension PY - 2019 AN - OPUS4-47740 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Herrmann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in offshore industries, such as the oil and gas pipelines, due to the high concentrations of sulfate in the seawater. SRM act upon the metal by the reactiveness of hydrogen sulfide (HS-), and by withdrawal of the available electrons (Fe --> Fe2+ + 2e-; E° = -0.47 V) in electrical contact with the metal (EMIC). However, methanogenic archaea can also cause MIC. Because they do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of methanogens, we studied the EMIC methanogenic strains isolated from marine sediments (Methanobacterium-affiliated strain IM1) and crude oil tanks (Methanococcus maripaludis Mic1c10), in an in-house developed flow-through cell to simulate a fluctuating environment. A co-culture of M. maripaludis and D. alaskensis was also established to study the effect of syntrophic growth on metal corrosion that may occur in industrial pipelines. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr). Surface analyses of the metal showed severe pitting with high methane production. Genomic analysis of the EMIC methanogen M. maripaludis Mic1c10 will provide an insight on the mechanisms of MIC. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC.zeige weniger T2 - Dechema CY - Berlin, Germany DA - 09.04.2019 KW - Corrosion KW - Corrosion products KW - Methanogens KW - Sulfate reducing bacteria KW - Flow-system KW - Environmental simulation PY - 2019 AN - OPUS4-47853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Wasserstofflagerung in unterirdischen geologischen Formationen und potenzielle Risiken durch Mikroorganismen N2 - Bei dem Vortrag werden die potentiellen mikrobiologischen Einflüsse im Falle der Lagerung von Wasserstofflagerung in unterirdischen geologischen Formationen vorgestellt, die Zusammenarbeit mit internen und auch externen Partnern. Der Fokus liegt dabei auf UGF; anaerobe Umgebungen, Sulfate reduzierenden Bakterien, methanogenen Archaea, weiterleitenden Systeme und die Kombination der Untersuchung abiotisch/biotische T2 - VDI-Schadensanalyse (49) CY - Würzburg, Germany DA - 17.10.2023 KW - MIC KW - Wasserstofflagerung KW - Unterirdische Speicher KW - Kontamination von H2 KW - H2-Abbau KW - Mikroorganismen KW - Biotische/abiotische Faktoren PY - 2023 AN - OPUS4-58645 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - Annie, Biwen A1 - Rene, Hesse A1 - Askar, Enis A1 - Ji Zheng, Yao A1 - Sobol, Oded A1 - Kunte, Hans-Jörg T1 - The impact and potential of halophilic microorganisms on alternative fuels N2 - As more industrial interests focusing on using salt caverns and repurposed gas or petroleum reservoirs for alternative fuel storage, i.e. CO2/H2, the question raises whether microorganisms may impact the infrastructure, gas purity and storage condition over time. Environments with high salinity (> 1.5 Meq of NaCl) are resided by halophiles (salt-loving microorganisms). To compensate for the intensive osmotic stress, they have resorted to two main adaptation strategies: 1) production of compatible solutes and 2) accumulation of intracellular KCl. Microbial community analysis of several high salinity environments revealed a number of recurring genera, including Halomonas and Halanaerobium. However, the impact of halophiles on the overall integrity and stability of the storage facilities remain largely unknown. To evaluate the suitability and stability of saline storage facilities, several model halophilic microorganisms, such as members of Halomonas, will be selected as testing subjects. First, the impact of halophiles on the infrastructure will be determined using an integrative approach by combining a number of techniques, including electrochemistry, TOF-SIMS, SEM/FIB/EDS and FIB-TEM. Second, the abilities of halophiles to alter the fuel composition (i.e. increase/decrease the fractions of H2) will be monitored using gas chromatography by growing them under high pressure. As a result of climate change and the accompanying mandatory shift to renewable energy resources, microorganisms will continue to play an important role in the energy sector, both to their benefit and detriment. Thus, it is important to achieve a certain level of understanding regarding the activities and mechanisms of halophiles prior to large-scaled excursions. T2 - ISMOS-8 CY - Online meeting DA - 07.06.2021 KW - Microbiologically influenced corrosion KW - Hydrogen KW - Gas storage KW - Contamination PY - 2021 AN - OPUS4-52891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen A1 - Kleinbub, Sherin T1 - Microbial corrosion coupled to methanogenesis by strains from different environments N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms, either chemically (formation of hydrogen sulfide) or electrically (direct electron uptake). Methanogenetic Archaea are also known to be involved in iron corrosion, forming a multi-species biofilm on corroding metallic structures. However, mechanistic details and kinetics of the overall process in methanogen-induced MIC are poorly understood. T2 - Beirat Material CY - Berlin, Germany DA - 26.04.2018 KW - Corrosion KW - Methanogens KW - Archaea KW - Implants KW - Biofilm PY - 2018 AN - OPUS4-45112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Herrmann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in oil and gas facilities. SRM act upon the metal by the re-activeness of hydrogen sulfide (HS-), and by withdrawal of the available electrons in electrical contact with the metal (EMIC). Methanogenic archaea (MA) can also cause MIC (Mi-MIC). Several MAs were identified to be corrosive by using elemental iron as the sole electron donor for methanogenesis, including Methanobacterium­-affliated IM1 and Methanococcus maripaludis Mic1c10. Currently, low corrosion rates were reported for MA, possibly due to the formation of siderite (4Fe + 5HCO3- + 5H+ ® 4FeCO3 + CH4 + 3H2O). Since MA do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of MA, we studied the EMIC methanogenic strains (IM1 and Mic1c10) individually or part of a syntrophic co-culture with SRM. Corrosion studies were conducted using an in-house developed flow-through system to simulate fluctuating environmental conditions. Results indicate that the rates of iron corrosion by MA (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr) and the co-culture (0.1 mm/yr). Scanning electron microscopy (SEM) images of the metal incubated with MA showed severe pitting corrosion. Genomic analysis of the EMIC MA was conducted to provide an insight on the possible cellular mechanisms that could be involved. Furthermore, low concentrations of MA-targeting biocides will be applied to EMIC MA in static and flow conditions to gain insights for possible mitigation strategies. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC. T2 - 7th International Symposium on Applied Microbiology and Molecular Biology in Oil Systems CY - Halifax, Canada DA - 18.06.2019 KW - MIC KW - Microbiologically influenced corrosion KW - Methanogens KW - SRB KW - Corrosion KW - Metalls PY - 2019 AN - OPUS4-48392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Deland, Eric ED - Eibergen, N. ED - Poulassichidis, T. T1 - Novel Multiport Flow-Column Corrosion Monitoring System (MFC) Revealed High Corrosion Rates by Corrosive Methanogenic Archaea N2 - MFC was used to study the corrosiveness of iron-utilizing methanogen, Methanobacterium IM1 under flow conditions. Comparing against electrical SRM, Desulfovibrio ferrophilus IS5, results showed under standard mesophilic conditions, average corrosion rates of Methanobacterium IM1 was double that of SRM. The highest corrosion rate of Methanobacterium IM1 reached up to 0.60 mm/yr under neutral conditions, and severe pitting was observed on the iron surface. Furthermore, the corrosion products of Methanobacterium IM1 were characterized with TOF-SIM, FIB-SEM and EDX, and preliminary results revealed FeCO3 is not the only corrosion product of Mi-MIC, as previously reported. Under low pH conditions, the maximum corrosion rate of Methanobacterium IM1 reached 1.57 mm/yr, which resulted in severed deformity of the iron specimen. Additional comparisons using different types of incubation material were conducted to standardize MFC MIC testing. T2 - Corrosion 2021 CY - Online Meeting DA - 19.04.2021 KW - MIC KW - Microbiologically influenced corrosion KW - Biocorrosion KW - Hi-Tension KW - Environmental condition KW - Flow Model KW - Modelling KW - Korrosion PY - 2021 UR - https://my.nace.org/PaperTrail/Authors/Submission.aspx?id=2b6387be-7390-ea11-813a-005056a95a7c SP - Paper C2021-16303, 1 AN - OPUS4-52480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kunte, Hans-Jörg T1 - Effect of Ectoine on DNA: Mechanisms of Interaction and Protection N2 - The compatible solute ectoine is a versatile protectant synthesized by many prokaryotes. It is used as an osmolyte helping microorganisms to maintain an osmotic equilibrium. In addition, ectoine acts as a stabilizer and protects proteins, membranes and whole cells against detrimental effects such as freezing and thawing, drying and high temperatures. Its protective effect is explained by the preferential exclusion model, which postulates that ectoine does not directly interact with biomolecules but is excluded from their surface. Interestingly, details on the interaction of ectoine with DNA are still unknown. Therefore, we studied the influence of ectoine on DNA and the mechanisms by which ectoine protects DNA against ionizing radiation. To emulate biological conditions, we used a sample holder comprising a silicon chip with a Si3N4 membrane, which allows for electron irradiation of DNA in aqueous solution. Analysis by atomic force microscopy revealed that without ectoine, DNA was damaged by irradiation with a dose of 1,7 +/-0,3 Gy. With ectoine, DNA remained undamaged, even after irradiation with 15 Gy. Simulations with dsDNA and ectoine in water revealed a preferential binding of the zwitterionic ectoine to the negatively charged DNA. According to the simulations, binding of ectoine will destabilize dsDNA. Destabilizing is probably caused by the transition of B-DNA to A-DNA and will reduce the DNA melting temperature, which was experimentally proven. The preferential binding provides a stable ectoine shell around DNA, which allows ectoine to reduce OH-radicals and electrons near the DNA and thereby mitigating the damaging effect of ionizing radiation. T2 - Halophiles 2019 CY - Cluj-Napoca, Romania DA - 24.06.2019 KW - Ectoine KW - Ionizing radiation KW - Preferential binding PY - 2019 AN - OPUS4-48618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Kunte, Hans-Jörg A1 - Schwarz, T. A1 - Galinski, E. A. ED - Lee, N. M. T1 - The compatible solute ectoine: protection mechanisms, strain development, and industrial production N2 - Bacteria, Archaea, and Eukarya can adapt to saline environments by accumulating compatible solutes in order to maintain an osmotic equilibrium. Compatible solutes are of diverse chemical structure (sugars, polyols, amino acid derivatives) and are beneficial for bacterial cells not only as osmoregulatory solutes but also as protectants of proteins by mitigating detrimental effects of freezing, drying, and high temperatures. The aspartate derivative ectoine is a widespread compatible solute in Bacteria and possesses additional protective properties compared with other compatible solutes and stabilizes even whole cells against stresses such as ultraviolet radiation or cytotoxins. Here, it is our intention to go beyond a simple description of effects, but to depict the molecular interaction of ectoine with biomolecules, such as proteins, membranes, and DNA and explain the underlying principles. The stabilizing properties of ectoine attracted industry, which saw the potential to market ectoine as a novel active component in health care products and cosmetics. In joint efforts of industry and research, a large-scale fermentation procedure has been developed with the halophilic bacterium Halomonas elongata used as a producer strain. The development and application of ectoine-excreting mutants from H. elongata (“leaky” mutants) allow for the annual production of ectoine on a scale of tons. The details of the strain development and fermentation processes will be introduced. KW - Ectoine KW - Biotechnology KW - Compatible solute KW - Preferential exclusion KW - Osmophobic effect PY - 2020 SN - 978-3-11-042773-8 SP - 121 EP - 136 PB - De Gruyter AN - OPUS4-51472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -